Связь потенциала и напряжения

Потенциал является важной характеристикой электрического поля, он определяет всевозможные энергетические характеристики процессов, проходящих в электрическом поле. Кроме того, расчет потенциала поля проще расчета напряженности, хотя бы потому, что является скалярной (а не векторной) величиной. Безусловно, что потенциал и напряженность поля связаны меду собой, сейчас мы установим эту связь. Пусть в произвольном электростатическом поле точечный заряд q совершил малое перемещение Δr из точки 1 в точку 2 (рис. 259).

Пренебрегая изменением напряженности поля E на этом участке, работу, совершенную полем можно записать в виде

По определению эта величина равна разности потенциалов, взятой с противоположным знаком, деленной на величину заряда, поэтому

38)энергия энергичического поля. Потонциал. Потонциал поля точечного заряда

Эне́ргия электромагни́тного по́ляэнергия, заключенная в электромагнитном поле. [ источник не указан 452 дня ] Сюда же относятся частные случаи чистогоэлектрического и чистого магнитного поля.

Понятие работы электрического поля по перемещению заряда вводится в полном соответствии с определением механической работы:

где — разность потенциалов (также употребляется термин напряжение).

Во многих задачах рассматривается непрерывный перенос заряда в течение некоторого времени между точками с заданной разностью потенциалов , в таком случае формулу для работы следует переписать следующим образом:

где — сила тока.

Потенциал (от лат. potentia — сила) , в широком смысле — средства, запасы, источники, имеющиеся в наличии и могущие быть мобилизованы, приведены в действие, использованы для достижения определённой цели, осуществления плана, решения какой-либо задачи; возможности отдельные лица, общества, государства в определённой области: экономический П. (см. Экономический потенциал) , производственный П. О применении термина "П. " в математике, физике, технике, биологии и химии см. Запаздывающий потенциал, Потенциал, Потенциал действия, Потенциал повреждения, Химический потенциал, Потенциалы электромагнитного поля и др. Потенциал, математ. и физ. , выражение в высшей математике, имеющее важное применение при изучении электрических и магнитных явлений, обозначающее напряжение электричества и магнетизма на поверхности проводников и служащее для измерения тока ("разность потенциалов"). ПОТЕНЦИА’Л, а, м. [от латин. potentia — сила, возможность] . 1. Физическое понятие, характеризующее величину потенциальной энергии в определенной точке пространства (физ. , тех.) . П. силы притяжения. Разность потенциалов. 2. перен. Совокупность средств, условий, необходимых для ведения, поддержания, сохранения чего-н. (нов. полит.) . П. войны (рессурсы для ведения войны) . Нет теперь более актуальной и благородной задачи как для больших, так и для небольших стран, чем посильное содействие организации, укреплению и неприкосновенности всего потенциала мира.

Потенциал. Разность потенциалов. Напряжение.

Потенциал электростатического поля — скалярная величина, равная отношению потен­циальной энергии заряда в поле к этому заряду:

— энергетическая характеристика поля в данной точке. Потенциал не зависит от величины заряда, помещенного в это поле.

Т.к. потенциальная энергия зависит от выбора системы координат, то и потенциал определяется с точностью до постоянной.

За точку отсчета потенциала выбирают в зависимости от задачи: а) потенциал Земли, б) потенциал бесконечно удаленной точки поля, в) потенциал отрицательной пластины конденсатора.

— следствие принци­па суперпозиции полей (потенциалы складываютсяалгебраически).

Потенциал численно равен работе поля по перемещению единичного положительного заряда из данной точки электрического поля в бесконечность.

В СИ потенциал измеряется в вольтах:

39)постоянный ток. ЭДС. Законы ома в интегральной и дифференцальной формах

Постоя́нный ток, (англ. direct current) — электрический ток, который с течением времени не изменяется по величине и направлению.

На рисунке справа красным цветом изображён график постоянного тока. По горизонтальной оси отложен масштаб времени , а по вертикальной — масштаб тока или электрического напряжения . Как видно, график постоянного тока представляет собой прямую линию, параллельную горизонтальной оси (оси времени).

Величина постоянного тока и электрического напряжения для любого момента времени сохраняется неизменной.

При постоянном токе через каждое поперечное сечение проводника в единицу времени протекает одинаковое количество электричества (электрических зарядов).

Электродвижущая сила (ЭДС) — скалярная физическая величина, характеризующая работу сторонних сил, то есть любых силнеэлектрического происхождения, действующих в квазистационарных цепях постоянного или переменного тока. В замкнутом проводящем контуре ЭДС равна работе этих сил по перемещению единичного положительного заряда вдоль всего контура [1] .

Читайте также:  Светодиодные прожекторы для теплиц

По аналогии с напряжённостью электрического поля вводят понятие напряжённость сторонних сил , под которой понимают векторную физическую величину, равную отношению сторонней силы, действующей на пробный электрический заряд, к величине этого заряда. Тогда в замкнутом контуре ЭДС будет равна:

где — элемент контура.

Закон Ома в интегральной форме Закон Ома для участка электрической цепи имеет вид: U = RI где: U — напряжение или разность потенциалов, I — сила тока, R — сопротивление. Закон Ома также применяется ко всей цепи, но в несколько изменённой форме: I=E/(R+r), где: e — ЭДС цепи, I — сила тока в цепи, R — сопротивление всех элементов цепи, r — внутреннее сопротивление источника питания. Закон Ома в дифференциальной форме Сопротивление R зависит как от материала, по которому течёт ток, так и от геометрических размеров проводника. Полезно переписать закон Ома в так называемой дифференциальной форме, в которой зависимость от геометрических размеров исчезает, и тогда закон Ома описывает исключительно электропроводящие свойства материала. Для изотропных материалов имеем: j=σ*E где j- вектор плотности тока, σ — удельная проводимость, E — вектор напряжённости электрического поля. Все величины, входящие в это уравнение, являются функциями координат и, в общем случае, времени. Если материал анизотропен, то направления векторов плотности тока и напряжённости могут не совпадать. В этом случае удельная проводимость является тензором ранга (1, 1). Раздел физики, изучающий течение электрического тока в различных средах, называется электродинамикой сплошных сред

40.Закон ДЖОУЛЯ — ЛЕНЦА ЗАКОН — количество теплоты Q, выделяющейся в единицу времени на участке электрич. цепи с сопротивлением R при протекании по нему пост. токаI, равно Q=RI 2

41. Работа и мощность тока. При протекании тока по однородному участку цепи электрическое поле совершает работу. За время Δt по цепи протекает заряд Δq = I Δt. Электрическое поле на выделенном учестке совершает работу

Мощность электрического тока равна отношению работы тока ΔA к интервалу времени Δt, за которое эта работа была совершена:

КПД источника тока.

— формула расчета КПД источника тока.

U — напряжение на данном участке цепи

η — коэффициент полезного действия

ε — ЭДС источника тока

42. Магнитное поле. Закон Био-Саварра-Лапласа .Закон Био Савара Лапласа — Магнитное поле любого тока может быть вычислено как векторная сумма полей, создаваемая отдельными участками токов.

Магни́тное по́ле — силовое поле, действующее на движущиеся электрические заряды и на тела, обладающие магнитным моментом, независимо от состояния их движения, магнитная составляющая электромагнитного поля [2] .

Магнитное поле может создаваться током заряженных частиц и/или магнитными моментами электронов в атомах (и магнитными моментами другихчастиц, хотя в заметно меньшей степени) (постоянные магниты).

Из выше сказанного следует, что электрическое поле характеризуется двумя физическими величинами: напряженностью (силовая характеристика) и потенциалом (энергетическая характеристика). Выясним как они связаны между собой. Пусть положительный заряд q перемещается силой электрического поля с эквипотенциальной поверхности, имеющей потенциал , на близко расположенную эквипотенциальную поверхность, имеющую потенциал (рис. 13.16).

Напряженность поля Е на всем малом пути dx можно считать постоянной. Тогда работа перемещения С другой стороны . Из этих уравнений получаем

(13.22)

Знак минус обусловлен тем, что напряженность поля направлена в сторону убывания потенциала, тогда как градиент потенциала направлен в сторону возрастания потенциала.

Для установления связи между силовой характеристикой электрического поля —напряжённостью и его энергетической характеристикой — потенциаломрассмотрим элементарную работу сил электрического поля на бесконечно малом перемещении точечного заряда q: dA = q Edl, эта же работа равна убыли потенциальной энергии заряда q: dA = — dWп = — q d ,где d — изменение потенциала электрического поля на длине перемещения dl. Приравнивая правые части выражений, получаем: Edl = -d или в декартовой системе координат

Ex dx + Ey dy + Ez dz = -d , (1.8)

где Ex, Ey, Ez — проекции вектора напряженности на оси системы координат. Поскольку выражение (1.8) представляет собой полный дифференциал, то для проекций вектора напряженности имеем

Читайте также:  Серпянка или бумажная лента для гипсокартона

.

Стоящее в скобках выражение является градиентом потенциала j, т. е.

E= — grad = -Ñ .

Напряжённость в какой-либо точке электрического поля равна градиенту потенциала в этой точке, взятому с обратным знаком. Знак «минус» указывает, что напряженность Eнаправлена в сторону убывания потенциала.

Рассмотрим электрическое поле, создаваемое положительным точечным зарядом q (рис. 1.6). Потенциал поля в точке М, положение которой определяется радиус-вектором r, равен = q / 4peer. Направление радиус-вектора rсовпадает с направлением вектора напряженности E, а градиент потенциала направлен в противоположную сторону. Проекция градиента на направление радиус-вектора

.

Проекция же градиента потенциала на направление вектора t, перпендикулярного вектору r, равна

,

т. е. в этом направлении потенциал электрического поля является постоянной величиной ( = const).

В рассмотренном случае направление вектора rсовпадает с направлением
рис. 1.6

силовых линий. Обобщая полученный результат, можно утверждать, что во всех точках кривой, ортогональной к силовым линиям, потенциал электрического поля одинаков. Геометрическим местом точек с одинаковым потенциалом является эквипотенциальная поверхность, ортогональная к силовым линиям.


рис. 1.7

При графическом изображении электрических полей часто используют эквипотенциальные поверхности. Обычно эквипотенциали проводят таким образом, чтобы разность потенциалов между любыми двумя эквипотенциальными поверхностями была одинакова. На рис. 1.7 приведена двухмерная картина электрического поля. Силовые линии показаны сплошными линиями, эквипотенциали — штриховыми.

Подобное изображение позволяет сказать, в какую сторону направлен вектор напряжённости электрического поля; где напряжённость больше, где меньше; куда начнёт двигаться электрический заряд, помещённый в ту или иную точку поля. Так как все точки эквипотенциальной поверхности находятся при одинаковом потенциале, то перемещение заряда вдоль нее не требует работы. Это значит, что сила, действующая на заряд, все время перпендикулярна перемещению.

| следующая лекция ==>
ПОТЕНЦИАЛ ЭЛЕКТРИЧЕСКОГО ПОЛЯ ТОЧЕЧНОГО ЗАРЯДА | Предел числовой последовательности

Дата добавления: 2016-01-29 ; просмотров: 1949 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Потенциал. Разность потенциалов. Напряжение.
Потенциал электростатического поля — скалярная величина, равная отношению потен­циальной энергии заряда в поле к этому заряду: — энергетическая характеристика поля в данной точке. Потенциал не зависит от величины заряда, помещенного в это поле.
Т.к. потенциальная энергия зависит от выбора системы координат, то и потенциал определяется с точностью до постоянной. За точку отсчета потенциала выбирают в зависимости от задачи: а) потенциал Земли, б) потенциал бесконечно удаленной точки поля, в) потенциал отрицательной пластины конденсатора.
— следствие принци­па суперпозиции полей (потенциалы складываютсяалгебраически).
Потенциал численно равен работе поля по перемещению единичного положительного заряда из данной точки электрического поля в бесконечность. В СИ потенциал измеряется в вольтах:
Разность потенциалов
Напряжение — разность значений потенциала в начальной и конечнойточках траектории. Напряжение численно равно работе электростатического поля при перемещении единичного положительного заряда вдоль силовых линий этого поля. Разность потенциалов (напряжение) не зависит от выбора системы координат!
Единица разности потенциалов Напряжение равно 1 В, если при перемещении положительного заряда в 1 Кл вдоль силовых линий поле совершает работу в 1 Дж.
Связь между напряженностью и напряжением.
Из доказанного выше: напряженность равна градиенту потенциала (скорости изменения потенциала вдоль направления d).
Из этого соотношения видно: 1. Вектор напряженности направлен в сторону уменьшения потенциала. 2. Электрическое поле существует, если существует разность потенциалов. 3. Единица напряженности: Напряженность поля равна 1 В/м, если между двумя точками поля, находящимися на расстоянии 1 м друг от друга существует разность потенциалов 1 В.
Эквипотенциальные поверхности. ЭПП — поверхности равного потенциала. Свойства ЭПП: — работа при перемещении заряда вдоль эквипотенциальной поверхности не совершается; — вектор напряженности перпендикулярен к ЭПП в каждой ее точке.
Измерение электрического напряжения (разности потенциалов) Между стержнем и корпусом — электрическое поле. Измерение потенциала кондуктора Измерение напряжения на гальваническом элементе Электрометр дает большую точность, чем вольтметр.
Потенциальная энергия взаимодействия зарядов.
Потенциал поля точечного заряда
Потенциал заряженного шара а) Внутри шараЕ=0, следовательно, потенциалы во всех точках внутри заряженного металлического шара одинаковы (. ) и равны потенциалу на поверхности шара. б) Снаружи поле шара убывает обратно пропорционально расстоянию от центра шара, как и в случае точечного заряда.
Перераспределение зарядов при контакте заряженных проводников. Переход зарядов происходит до тех пор, пока потенциалы контактирующих тел не станут равными.
Читайте также:  Теплые полы за счет отопления

Основные уравнения электростатики и их общее решение в бесконечном пространстве.

Уравнения электростатики получаются, если в общих уравнениях Максвелла частные производные по времени и плотность тока положить равными нулю:

Первое уравнение позволяет ввести потенциал

Тогда второе уравнение дает уравнение

которое называется уравнением Пуассона.

Фундаментальное значение имеет уравнение для потенциала точечного заряда

где -дельта функция. Прямой проверкой показывается, что его решение есть

Это решение называется фундаментальным и позволяет написать общий вид решения уравнения Пуассона для произвольной плотности

Первый интеграл описывает вклад объемного заряда с плотностью и называется ньютоновским потенциалом. Второй интеграл описывает вклад поверхностных зарядов с плотностью и называется поверхностным потенциалом.

Используя связь потенциала и напряженности поля, получаем уравнение

Две последние формулы дают решение прямой задачи электростатики в бесконечном пространстве (определение поля по распределению заряда).

13. Прямые задачи электростатики в ограниченном пространстве.

Если пространство ограничено, то для определения единственного решения уравнения Пуассона необходимо указать граничное условие. Различают две задачи.

Задача Дирихле (на границе задан потенциал)

где -область, в которой поставлена задача, а -ее граница.

Задача Неймана (на границе задана нормальная производная потенциала)

Обе задачи имеют единственное решение.

14. Мультипольное разложение.

На расстояниях от системы точечных зарядов , много больших размеров системы, потенциал можно представить в виде сумму (разлагая в ряд Тейлора по малым ):

( -полный заряд или мультиполь нулевого порядка),

( -дипольный момент или мультиполь первого порядка),

( -квадрупольный момент или мультиполь второго порядка).

15. Некоторые методы решения задач электростатики.

Пусть сформулирована задача электростатики, в которой на некоторой поверхности задан постоянный потенциал. Тогда к реально существующим зарядам добавляются заряды изображения, величина которых и расположение подбираются так, чтобы в новой задачи указанная поверхность имела заданный потенциал. Примеры отражение в плоскости, отражение в сфере и так далее.

К методу изображений близок метод инверсии, который основан на математической теореме об инверсии. Пусть есть потенциал системы зарядов расположенных в точках со сферическими координатами . Тогда

есть потенциал системы зарядов , расположенных в точках с координатами . Здесь -некоторое действительное число.

Пусть имеется система точечных зарядов . Тогда потенциалы каждого заряда равны

Пусть далее имеется другая система зарядов , в тех же точках. Тогда потенциалы равны

Умножим первое равенство на , второе на , оба просуммируем и вычтем одно из другого В результате получим

Нетрудно обобщить эту теорему и на неточечные проводники:

Если на проводниках при зарядах ,потенциалы равны , а при зарядах ,потенциалы равны ,тогда выполняется соотношение

16. Уравнения Лапласа в декартовой, цилиндрической и полярной системах координат.

Уравнением Лапласа называется уравнение

то есть это уравнение для потенциала при равной нулю плотности заряда.

Методом разделения переменных получается общий вид решения этого уравнения в различных системах координат.

В декартовой системе координат уравнение Лапласа имеет вид

В цилиндрической системе координат уравнение Лапласа имеет вид

В сферической системе координат уравнение Лапласа имеет вид

17. Уравнения теории для постоянных токов, граничные условия для токов.

В токостатике , но . Из уравнений Максвелла получаем

Отсюда следуют основные уравнения токостатики

Для постоянной удельной проводимости эти уравнения эквиалентны

Граничные условия для токов имеют вид

Задача токостатики в виде

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Студент — человек, постоянно откладывающий неизбежность. 10824 — | 7386 — или читать все.

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Понравилась статья? Поделиться с друзьями:
ТурбоЗайм
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.

Связь потенциала и напряжения

Потенциал является важной характеристикой электрического поля, он определяет всевозможные энергетические характеристики процессов, проходящих в электрическом поле. Кроме того, расчет потенциала поля проще расчета напряженности, хотя бы потому, что является скалярной (а не векторной) величиной. Безусловно, что потенциал и напряженность поля связаны меду собой, сейчас мы установим эту связь. Пусть в произвольном электростатическом поле точечный заряд q совершил малое перемещение Δr из точки 1 в точку 2 (рис. 259).

Пренебрегая изменением напряженности поля E на этом участке, работу, совершенную полем можно записать в виде

По определению эта величина равна разности потенциалов, взятой с противоположным знаком, деленной на величину заряда, поэтому

38)энергия энергичического поля. Потонциал. Потонциал поля точечного заряда

Эне́ргия электромагни́тного по́ляэнергия, заключенная в электромагнитном поле. [ источник не указан 452 дня ] Сюда же относятся частные случаи чистогоэлектрического и чистого магнитного поля.

Понятие работы электрического поля по перемещению заряда вводится в полном соответствии с определением механической работы:

где — разность потенциалов (также употребляется термин напряжение).

Во многих задачах рассматривается непрерывный перенос заряда в течение некоторого времени между точками с заданной разностью потенциалов , в таком случае формулу для работы следует переписать следующим образом:

где — сила тока.

Потенциал (от лат. potentia — сила) , в широком смысле — средства, запасы, источники, имеющиеся в наличии и могущие быть мобилизованы, приведены в действие, использованы для достижения определённой цели, осуществления плана, решения какой-либо задачи; возможности отдельные лица, общества, государства в определённой области: экономический П. (см. Экономический потенциал) , производственный П. О применении термина "П. " в математике, физике, технике, биологии и химии см. Запаздывающий потенциал, Потенциал, Потенциал действия, Потенциал повреждения, Химический потенциал, Потенциалы электромагнитного поля и др. Потенциал, математ. и физ. , выражение в высшей математике, имеющее важное применение при изучении электрических и магнитных явлений, обозначающее напряжение электричества и магнетизма на поверхности проводников и служащее для измерения тока ("разность потенциалов"). ПОТЕНЦИА’Л, а, м. [от латин. potentia — сила, возможность] . 1. Физическое понятие, характеризующее величину потенциальной энергии в определенной точке пространства (физ. , тех.) . П. силы притяжения. Разность потенциалов. 2. перен. Совокупность средств, условий, необходимых для ведения, поддержания, сохранения чего-н. (нов. полит.) . П. войны (рессурсы для ведения войны) . Нет теперь более актуальной и благородной задачи как для больших, так и для небольших стран, чем посильное содействие организации, укреплению и неприкосновенности всего потенциала мира.

Потенциал. Разность потенциалов. Напряжение.

Потенциал электростатического поля — скалярная величина, равная отношению потен­циальной энергии заряда в поле к этому заряду:

— энергетическая характеристика поля в данной точке. Потенциал не зависит от величины заряда, помещенного в это поле.

Т.к. потенциальная энергия зависит от выбора системы координат, то и потенциал определяется с точностью до постоянной.

За точку отсчета потенциала выбирают в зависимости от задачи: а) потенциал Земли, б) потенциал бесконечно удаленной точки поля, в) потенциал отрицательной пластины конденсатора.

— следствие принци­па суперпозиции полей (потенциалы складываютсяалгебраически).

Потенциал численно равен работе поля по перемещению единичного положительного заряда из данной точки электрического поля в бесконечность.

В СИ потенциал измеряется в вольтах:

39)постоянный ток. ЭДС. Законы ома в интегральной и дифференцальной формах

Постоя́нный ток, (англ. direct current) — электрический ток, который с течением времени не изменяется по величине и направлению.

На рисунке справа красным цветом изображён график постоянного тока. По горизонтальной оси отложен масштаб времени , а по вертикальной — масштаб тока или электрического напряжения . Как видно, график постоянного тока представляет собой прямую линию, параллельную горизонтальной оси (оси времени).

Величина постоянного тока и электрического напряжения для любого момента времени сохраняется неизменной.

При постоянном токе через каждое поперечное сечение проводника в единицу времени протекает одинаковое количество электричества (электрических зарядов).

Электродвижущая сила (ЭДС) — скалярная физическая величина, характеризующая работу сторонних сил, то есть любых силнеэлектрического происхождения, действующих в квазистационарных цепях постоянного или переменного тока. В замкнутом проводящем контуре ЭДС равна работе этих сил по перемещению единичного положительного заряда вдоль всего контура [1] .

Читайте также:  Серые концы на темных волосах

По аналогии с напряжённостью электрического поля вводят понятие напряжённость сторонних сил , под которой понимают векторную физическую величину, равную отношению сторонней силы, действующей на пробный электрический заряд, к величине этого заряда. Тогда в замкнутом контуре ЭДС будет равна:

где — элемент контура.

Закон Ома в интегральной форме Закон Ома для участка электрической цепи имеет вид: U = RI где: U — напряжение или разность потенциалов, I — сила тока, R — сопротивление. Закон Ома также применяется ко всей цепи, но в несколько изменённой форме: I=E/(R+r), где: e — ЭДС цепи, I — сила тока в цепи, R — сопротивление всех элементов цепи, r — внутреннее сопротивление источника питания. Закон Ома в дифференциальной форме Сопротивление R зависит как от материала, по которому течёт ток, так и от геометрических размеров проводника. Полезно переписать закон Ома в так называемой дифференциальной форме, в которой зависимость от геометрических размеров исчезает, и тогда закон Ома описывает исключительно электропроводящие свойства материала. Для изотропных материалов имеем: j=σ*E где j- вектор плотности тока, σ — удельная проводимость, E — вектор напряжённости электрического поля. Все величины, входящие в это уравнение, являются функциями координат и, в общем случае, времени. Если материал анизотропен, то направления векторов плотности тока и напряжённости могут не совпадать. В этом случае удельная проводимость является тензором ранга (1, 1). Раздел физики, изучающий течение электрического тока в различных средах, называется электродинамикой сплошных сред

40.Закон ДЖОУЛЯ — ЛЕНЦА ЗАКОН — количество теплоты Q, выделяющейся в единицу времени на участке электрич. цепи с сопротивлением R при протекании по нему пост. токаI, равно Q=RI 2

41. Работа и мощность тока. При протекании тока по однородному участку цепи электрическое поле совершает работу. За время Δt по цепи протекает заряд Δq = I Δt. Электрическое поле на выделенном учестке совершает работу

Мощность электрического тока равна отношению работы тока ΔA к интервалу времени Δt, за которое эта работа была совершена:

КПД источника тока.

— формула расчета КПД источника тока.

U — напряжение на данном участке цепи

η — коэффициент полезного действия

ε — ЭДС источника тока

42. Магнитное поле. Закон Био-Саварра-Лапласа .Закон Био Савара Лапласа — Магнитное поле любого тока может быть вычислено как векторная сумма полей, создаваемая отдельными участками токов.

Магни́тное по́ле — силовое поле, действующее на движущиеся электрические заряды и на тела, обладающие магнитным моментом, независимо от состояния их движения, магнитная составляющая электромагнитного поля [2] .

Магнитное поле может создаваться током заряженных частиц и/или магнитными моментами электронов в атомах (и магнитными моментами другихчастиц, хотя в заметно меньшей степени) (постоянные магниты).

Из выше сказанного следует, что электрическое поле характеризуется двумя физическими величинами: напряженностью (силовая характеристика) и потенциалом (энергетическая характеристика). Выясним как они связаны между собой. Пусть положительный заряд q перемещается силой электрического поля с эквипотенциальной поверхности, имеющей потенциал , на близко расположенную эквипотенциальную поверхность, имеющую потенциал (рис. 13.16).

Напряженность поля Е на всем малом пути dx можно считать постоянной. Тогда работа перемещения С другой стороны . Из этих уравнений получаем

(13.22)

Знак минус обусловлен тем, что напряженность поля направлена в сторону убывания потенциала, тогда как градиент потенциала направлен в сторону возрастания потенциала.

Для установления связи между силовой характеристикой электрического поля —напряжённостью и его энергетической характеристикой — потенциаломрассмотрим элементарную работу сил электрического поля на бесконечно малом перемещении точечного заряда q: dA = q Edl, эта же работа равна убыли потенциальной энергии заряда q: dA = — dWп = — q d ,где d — изменение потенциала электрического поля на длине перемещения dl. Приравнивая правые части выражений, получаем: Edl = -d или в декартовой системе координат

Ex dx + Ey dy + Ez dz = -d , (1.8)

где Ex, Ey, Ez — проекции вектора напряженности на оси системы координат. Поскольку выражение (1.8) представляет собой полный дифференциал, то для проекций вектора напряженности имеем

Читайте также:  Теплые полы за счет отопления

.

Стоящее в скобках выражение является градиентом потенциала j, т. е.

E= — grad = -Ñ .

Напряжённость в какой-либо точке электрического поля равна градиенту потенциала в этой точке, взятому с обратным знаком. Знак «минус» указывает, что напряженность Eнаправлена в сторону убывания потенциала.

Рассмотрим электрическое поле, создаваемое положительным точечным зарядом q (рис. 1.6). Потенциал поля в точке М, положение которой определяется радиус-вектором r, равен = q / 4peer. Направление радиус-вектора rсовпадает с направлением вектора напряженности E, а градиент потенциала направлен в противоположную сторону. Проекция градиента на направление радиус-вектора

.

Проекция же градиента потенциала на направление вектора t, перпендикулярного вектору r, равна

,

т. е. в этом направлении потенциал электрического поля является постоянной величиной ( = const).

В рассмотренном случае направление вектора rсовпадает с направлением
рис. 1.6

силовых линий. Обобщая полученный результат, можно утверждать, что во всех точках кривой, ортогональной к силовым линиям, потенциал электрического поля одинаков. Геометрическим местом точек с одинаковым потенциалом является эквипотенциальная поверхность, ортогональная к силовым линиям.


рис. 1.7

При графическом изображении электрических полей часто используют эквипотенциальные поверхности. Обычно эквипотенциали проводят таким образом, чтобы разность потенциалов между любыми двумя эквипотенциальными поверхностями была одинакова. На рис. 1.7 приведена двухмерная картина электрического поля. Силовые линии показаны сплошными линиями, эквипотенциали — штриховыми.

Подобное изображение позволяет сказать, в какую сторону направлен вектор напряжённости электрического поля; где напряжённость больше, где меньше; куда начнёт двигаться электрический заряд, помещённый в ту или иную точку поля. Так как все точки эквипотенциальной поверхности находятся при одинаковом потенциале, то перемещение заряда вдоль нее не требует работы. Это значит, что сила, действующая на заряд, все время перпендикулярна перемещению.

| следующая лекция ==>
ПОТЕНЦИАЛ ЭЛЕКТРИЧЕСКОГО ПОЛЯ ТОЧЕЧНОГО ЗАРЯДА | Предел числовой последовательности

Дата добавления: 2016-01-29 ; просмотров: 1949 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Потенциал. Разность потенциалов. Напряжение.
Потенциал электростатического поля — скалярная величина, равная отношению потен­циальной энергии заряда в поле к этому заряду: — энергетическая характеристика поля в данной точке. Потенциал не зависит от величины заряда, помещенного в это поле.
Т.к. потенциальная энергия зависит от выбора системы координат, то и потенциал определяется с точностью до постоянной. За точку отсчета потенциала выбирают в зависимости от задачи: а) потенциал Земли, б) потенциал бесконечно удаленной точки поля, в) потенциал отрицательной пластины конденсатора.
— следствие принци­па суперпозиции полей (потенциалы складываютсяалгебраически).
Потенциал численно равен работе поля по перемещению единичного положительного заряда из данной точки электрического поля в бесконечность. В СИ потенциал измеряется в вольтах:
Разность потенциалов
Напряжение — разность значений потенциала в начальной и конечнойточках траектории. Напряжение численно равно работе электростатического поля при перемещении единичного положительного заряда вдоль силовых линий этого поля. Разность потенциалов (напряжение) не зависит от выбора системы координат!
Единица разности потенциалов Напряжение равно 1 В, если при перемещении положительного заряда в 1 Кл вдоль силовых линий поле совершает работу в 1 Дж.
Связь между напряженностью и напряжением.
Из доказанного выше: напряженность равна градиенту потенциала (скорости изменения потенциала вдоль направления d).
Из этого соотношения видно: 1. Вектор напряженности направлен в сторону уменьшения потенциала. 2. Электрическое поле существует, если существует разность потенциалов. 3. Единица напряженности: Напряженность поля равна 1 В/м, если между двумя точками поля, находящимися на расстоянии 1 м друг от друга существует разность потенциалов 1 В.
Эквипотенциальные поверхности. ЭПП — поверхности равного потенциала. Свойства ЭПП: — работа при перемещении заряда вдоль эквипотенциальной поверхности не совершается; — вектор напряженности перпендикулярен к ЭПП в каждой ее точке.
Измерение электрического напряжения (разности потенциалов) Между стержнем и корпусом — электрическое поле. Измерение потенциала кондуктора Измерение напряжения на гальваническом элементе Электрометр дает большую точность, чем вольтметр.
Потенциальная энергия взаимодействия зарядов.
Потенциал поля точечного заряда
Потенциал заряженного шара а) Внутри шараЕ=0, следовательно, потенциалы во всех точках внутри заряженного металлического шара одинаковы (. ) и равны потенциалу на поверхности шара. б) Снаружи поле шара убывает обратно пропорционально расстоянию от центра шара, как и в случае точечного заряда.
Перераспределение зарядов при контакте заряженных проводников. Переход зарядов происходит до тех пор, пока потенциалы контактирующих тел не станут равными.
Читайте также:  Сувениры к рождеству своими руками

Основные уравнения электростатики и их общее решение в бесконечном пространстве.

Уравнения электростатики получаются, если в общих уравнениях Максвелла частные производные по времени и плотность тока положить равными нулю:

Первое уравнение позволяет ввести потенциал

Тогда второе уравнение дает уравнение

которое называется уравнением Пуассона.

Фундаментальное значение имеет уравнение для потенциала точечного заряда

где -дельта функция. Прямой проверкой показывается, что его решение есть

Это решение называется фундаментальным и позволяет написать общий вид решения уравнения Пуассона для произвольной плотности

Первый интеграл описывает вклад объемного заряда с плотностью и называется ньютоновским потенциалом. Второй интеграл описывает вклад поверхностных зарядов с плотностью и называется поверхностным потенциалом.

Используя связь потенциала и напряженности поля, получаем уравнение

Две последние формулы дают решение прямой задачи электростатики в бесконечном пространстве (определение поля по распределению заряда).

13. Прямые задачи электростатики в ограниченном пространстве.

Если пространство ограничено, то для определения единственного решения уравнения Пуассона необходимо указать граничное условие. Различают две задачи.

Задача Дирихле (на границе задан потенциал)

где -область, в которой поставлена задача, а -ее граница.

Задача Неймана (на границе задана нормальная производная потенциала)

Обе задачи имеют единственное решение.

14. Мультипольное разложение.

На расстояниях от системы точечных зарядов , много больших размеров системы, потенциал можно представить в виде сумму (разлагая в ряд Тейлора по малым ):

( -полный заряд или мультиполь нулевого порядка),

( -дипольный момент или мультиполь первого порядка),

( -квадрупольный момент или мультиполь второго порядка).

15. Некоторые методы решения задач электростатики.

Пусть сформулирована задача электростатики, в которой на некоторой поверхности задан постоянный потенциал. Тогда к реально существующим зарядам добавляются заряды изображения, величина которых и расположение подбираются так, чтобы в новой задачи указанная поверхность имела заданный потенциал. Примеры отражение в плоскости, отражение в сфере и так далее.

К методу изображений близок метод инверсии, который основан на математической теореме об инверсии. Пусть есть потенциал системы зарядов расположенных в точках со сферическими координатами . Тогда

есть потенциал системы зарядов , расположенных в точках с координатами . Здесь -некоторое действительное число.

Пусть имеется система точечных зарядов . Тогда потенциалы каждого заряда равны

Пусть далее имеется другая система зарядов , в тех же точках. Тогда потенциалы равны

Умножим первое равенство на , второе на , оба просуммируем и вычтем одно из другого В результате получим

Нетрудно обобщить эту теорему и на неточечные проводники:

Если на проводниках при зарядах ,потенциалы равны , а при зарядах ,потенциалы равны ,тогда выполняется соотношение

16. Уравнения Лапласа в декартовой, цилиндрической и полярной системах координат.

Уравнением Лапласа называется уравнение

то есть это уравнение для потенциала при равной нулю плотности заряда.

Методом разделения переменных получается общий вид решения этого уравнения в различных системах координат.

В декартовой системе координат уравнение Лапласа имеет вид

В цилиндрической системе координат уравнение Лапласа имеет вид

В сферической системе координат уравнение Лапласа имеет вид

17. Уравнения теории для постоянных токов, граничные условия для токов.

В токостатике , но . Из уравнений Максвелла получаем

Отсюда следуют основные уравнения токостатики

Для постоянной удельной проводимости эти уравнения эквиалентны

Граничные условия для токов имеют вид

Задача токостатики в виде

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Студент — человек, постоянно откладывающий неизбежность. 10824 — | 7386 — или читать все.

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Понравилась статья? Поделиться с друзьями:
ТурбоЗайм
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.

Adblock detector