Свойства протонов и нейтронов

Нейтрон ( n , n 0 <displaystyle n,n^<0>> )
Семья фермион
Группа адрон, барион, N-барион, нуклон
Участвует во взаимодействиях Сильное, слабое, электромагнитное и гравитационное
Античастица антинейтрон ( n ¯ , n ¯ 0 ) <displaystyle (<ar >,<ar >^<0>)>
Масса 939,565 420 52(54) МэВ [1] , 1,674 927 498 04(95)⋅10 −27 кг [2] , 1,008 664 915 95(49) а. е. м. [3]
Время жизни 880,0 ± 0,9 c [4]
В честь кого или чего названа От лат. корня neutral и обычного для частиц суффикса on (он)
Квантовые числа
Электрический заряд
Барионное число 1
Спин 1/2 ħ
Магнитный момент −1,913 042 73(45) ядерного магнетона [5] , или −9,662 365 1(23)×10 −27 Дж/Тл [6]
Внутренняя чётность 1
Изотопический спин −1/2
Странность
Очарование
Другие свойства
Кварковый состав udd
Схема распада p + + e − + ν ¯ e <displaystyle p^<+>+e^<->+<ar <
u >>_> (99,7%);
p + + e − + ν ¯ e + γ <displaystyle p^<+>+e^<->+<ar <
u >>_
+gamma > (0,309%)
Теоретически обоснована В 1930 году В. А. Амбарцумян и Д. Д. Иваненко; в 1930 году Вальтер Боте и его студент Герберт Беккер, работавшие в Германии
Обнаружена 27 февраля 1932, Джеймс Чедвик
Медиафайлы на Викискладе

Нейтро́н (от лат. neuter — ни тот, ни другой) — тяжёлая элементарная частица, не имеющая электрического заряда. Нейтрон является фермионом и принадлежит к классу барионов. Нейтроны и протоны являются двумя главными компонентами атомных ядер [7] ; общее название для протонов и нейтронов — нуклоны.

Содержание

Открытие [ править | править код ]

Открытие нейтрона (27 февраля 1932) принадлежит физику Джеймсу Чедвику, который объяснил результаты опытов В. Боте и Г. Беккера (1930), в которых обнаружилось, что вылетающие при распаде полония α-частицы, воздействуя на лёгкие элементы, приводят к возникновению сильно проникающего излучения. Чедвик первый предположил, что новое проникающее излучение состоит из нейтронов, и определил их массу [8] [9] . За это открытие он получил Нобелевскую премию по физике в 1935 году.

В 1930 году В. А. Амбарцумян и Д. Д. Иваненко показали, что атом не может, как считалось в то время, состоять только из протонов и электронов, что электроны, вылетающие из ядра при бета-распаде, рождаются в момент распада, и что кроме протонов, в ядре должны присутствовать некие нейтральные частицы [10] [11] .

В 1930 году Вальтер Боте и его студент Герберт Беккер, работавшие в Германии, обнаружили, что если высокоэнергетичные альфа-частицы, испускаемые полонием-210, попадают на некоторые лёгкие элементы, в особенности на бериллий или литий, образуется излучение с необычно большой проникающей способностью. Сначала считалось, что это — гамма-излучение, но выяснилось, что оно обладает гораздо большей проникающей способностью, чем все известные гамма-лучи, и результаты эксперимента не могут быть таким образом интерпретированы. Важный вклад сделали в 1932 году Ирен и Фредерик Жолио-Кюри. Они показали, что если это неизвестное излучение попадает на парафин или любое другое соединение, богатое водородом, образуются протоны высоких энергий. Само по себе это ничему не противоречило, но численные результаты приводили к нестыковкам в теории. Позднее в том же 1932 году английский физик Джеймс Чедвик провёл серию экспериментов, в которых он показал, что гамма-лучевая гипотеза несостоятельна. Он предположил, что это излучение состоит из незаряженных частиц с массой, близкой к массе протона, и провёл серию экспериментов, подтвердивших эту гипотезу. Эти незаряженные частицы были названы нейтронами от латинского корня neutral и обычного для частиц суффикса on (он). В том же 1932 году Д. Д. Иваненко [12] и затем В. Гейзенберг предположили, что атомное ядро состоит из протонов и нейтронов.

Основные характеристики [ править | править код ]

  • Масса (примерно на 0,1378 % больше, чем масса протона; приведены рекомендованные значения CODATA 2014 года, в скобках указана погрешность величины в единицах последней значимой цифры, одно стандартное отклонение):
  • 939,565 420 52(54) МэВ [1] ;
  • 1,008 664 915 95(49) а. е. м.[3] ;
  • 1,674 927 498 04(95)⋅10 −27 кг [2] ;
  • 1 838,683 661 73(89) массы электрона[13] .
  • Электрический заряд: 0. Экспериментально измеренное значение совместимо с нулём: (−0,2 ± 0,8)⋅10 −21 элементарного электрического заряда[4] .
  • Спин: 1 2 (фермион). Спин свободного нейтрона измеряется методом когерентного отражения от магнитных зеркал [14] .
  • Время жизни в свободном состоянии: τ = 880,0 ± 0,9 секунды [4][15] (период полураспадаT1/2 = τ·ln 2 = 610,0 ± 0,6 секунды) [16] .
  • Магнитный момент: −1,913 042 73(45) ядерного магнетона[5] , или −9,662 365 1(23)×10 −27 Дж/Тл[6] . Магнитный момент нейтрона измеряется с помощью резонансного метода молекулярных пучков [14] .
  • Внутренняя чётность: равна 1 [17] .
  • Несмотря на нулевой электрический заряд, нейтрон не является истинно нейтральной частицей. Античастицей нейтрона является антинейтрон, который не совпадает с самим нейтроном. Нейтрон аннигилирует с антинейтроном и другими антиадронами (в частности, с антипротоном).

    С нейтроном связаны несколько физических величин, имеющих размерность длины:

    • комптоновская длина волны нейтрона λ K = 2 π ℏ m c ≈ 1 , 32 ⋅ 10 − 13 <displaystyle lambda _=<frac <2pi hbar >>approx 1<,>32cdot 10^<-13>>см;
    • расстояние от центра нейтрона до максимума плотности отрицательного электрического заряда (зарядовый радиус) R E ≈ 0 , 75 ⋅ 10 − 13 <displaystyle R_approx 0<,>75cdot 10^<-13>>см [18] ;
    • отношение электрического дипольного момента нейтрона к элементарному заряду | d n e | 2 , 9 ⋅ 10 − 26 <displaystyle left|<frac >>
      ight| см [4] ;
    • гравитационный радиус нейтрона R G = 2 G m c 2 ≈ 2 , 48 ⋅ 10 − 52 <displaystyle R_=<frac <2Gm><2>>>approx 2<,>48cdot 10^<-52>>см.

    Строение и распад [ править | править код ]

    Считается надёжно установленным, что нейтрон является связанным состоянием трёх кварков: одного «верхнего» (u) и двух «нижних» (d) кварков (кварковая структура udd). Близость значений масс протона и нейтрона обусловлена свойством приближённой изотопической инвариантности: в протоне (кварковая структура uud) один d-кварк заменяется на u-кварк, но поскольку массы этих кварков очень близки, такая замена слабо сказывается на массе составной частицы.

    Поскольку нейтрон тяжелее протона (на 1,293 332 36(46) МэВ [19] , или 0,001 388 449 33(49) а.е.м. [20] ), то он может распадаться в свободном состоянии. Единственным каналом распада, разрешённым законом сохранения энергии и законами сохранения электрического заряда, барионного и лептонного квантовых чисел, является бета-распад нейтрона на протон, электрон и электронное антинейтрино (а также, возможно, гамма-квант [21] ). Поскольку этот распад идёт с образованием лептонов и изменением аромата кварков, то он обязан происходить только за счёт слабого взаимодействия. Однако ввиду специфических свойств слабого взаимодействия, скорость этой реакции аномально мала из-за крайне малого энерговыделения (разности масс начальных и конечных частиц). Именно этим объясняется тот факт, что нейтрон является настоящим долгожителем среди элементарных частиц: его время жизни, приблизительно равное 15 минутам , это примерно в миллиард раз больше времени жизни мюона — следующей за нейтроном метастабильной частицы по времени жизни.

    Читайте также:  Способы утепления пола первого этажа

    Кроме того, разница масс между протоном и нейтроном, составляющая около 1,3 МэВ , невелика по меркам ядерной физики. Вследствие этого в ядрах нейтрон может находиться в более глубокой потенциальной яме, чем протон, и потому бета-распад нейтрона оказывается энергетически невыгодным. Это приводит к тому, что в ядрах нейтрон может быть стабильным. Более того, в нейтроно-дефицитных ядрах происходит бета-распад протона в нейтрон (с захватом орбитального электрона или вылетом позитрона); этот процесс энергетически запрещён для свободного протона.

    На кварковом уровне бета-распад нейтрона может быть описан как превращение одного из d-кварков в u-кварк с испусканием виртуального W − -бозона, который немедленно распадается на электрон и электронное антинейтрино.

    Изучение распада свободного нейтрона важно для уточнения свойств слабого взаимодействия, а также поиска нарушений временно́й инвариантности, нейтрон-антинейтронных осцилляций и т. п.

    Внутренняя структура нейтрона впервые была экспериментально исследована Р. Хофштадтером путём изучения столкновений пучка электронов высоких энергий ( 2 ГэВ ) с нейтронами, входящими в состав дейтрона (Нобелевская премия по физике 1961 г.) [22] . Нейтрон состоит из тяжёлой сердцевины (керна) радиусом ≈ 0,25·10 −13 см , с высокой плотностью массы и заряда, которая имеет общий заряд ≈ +0,35 e , и окружающей его относительно разреженной оболочки («мезонной шубы»). На расстоянии от ≈ 0,25·10 −13 до ≈ 1,4·10 −13 см эта оболочка состоит в основном из виртуальных ρ — и π -мезонов и обладает общим зарядом ≈ −0,50 e . Дальше расстояния ≈ 2,5·10 −13 см от центра простирается оболочка из виртуальных ω — и π -мезонов, несущих суммарный заряд около +0,15 e [23] [18] .

    Иные свойства [ править | править код ]

    Изоспины нейтрона и протона одинаковы ( 1 2 ), но их проекции противоположны по знаку. Проекция изоспина нейтрона по соглашению в физике элементарных частиц принимается равной − 1 2 , в ядерной физике + 1 2 (поскольку в большинстве ядер нейтронов больше, чем протонов, это соглашение позволяет избегать отрицательных суммарных проекций изоспина).

    Нейтрон и протон вместе с Λ , Σ , Ξ <displaystyle Lambda ,Sigma ,Xi > — барионами входят в состав октета барионов со спином 1 2 <displaystyle < frac <1><2>>> и барионным зарядом 1 <displaystyle 1> . [24]

    Нейтрон — единственная из имеющих массу покоя элементарных частиц, для которой непосредственно наблюдалось гравитационное взаимодействие — искривление в поле земного тяготения траектории хорошо коллимированного пучка ультрахолодных нейтронов. Измеренное гравитационное ускорение нейтронов в пределах точности эксперимента совпадает с гравитационным ускорением макроскопических тел. [25]

    При огромном давлении внутри нейтронной звезды нейтроны могут деформироваться вплоть до того, что приобретают форму куба [26] .

    Направления исследований в физике нейтронов [ править | править код ]

    • возможность существования тетранейтронов и иных связанных состояний из одних только нейтронов
    • поиск возможных нейтрон-антинейтронных осцилляций
    • поиск электрического дипольного момента нейтрона. Электрический дипольный момент нейтрона был бы точно равен нулю, если бы имела место инвариантность всех взаимодействий, в которых участвует нейтрон, относительно операции отражения времени. Слабые взаимодействия неинвариантны относительно операции отражения времени. Вследствие этого нейтрон должен был бы обладать электрическим дипольным моментом. Причина отсутствия электрического дипольного момента у нейтрона неизвестна. [27]
    • изучение свойств сильно нейтроно-избыточных лёгких ядер
    • получение и хранение холодных нейтронов
    • влияние потоков нейтронов на живые ткани и организмы
    • влияние сверхмощных потоков нейтронов на свойства материалов
    • изучение распространения нейтронов в различных средах
    • изучение различных типов структуры в физике конденсированных сред
    • нейтронно-дифракционный анализ
    • нейтронно-активационный анализ
    Частица Символ Масса покоя Заряд, Кл
    кг а.е.м.
    протон р 1,678·10 -27 1,007276 1,602·10 -19
    нейтрон п 1,675·10 -27 1,008665
    электрон е 9,108·10 -31 0,00549 1,602·10 -19

    Размеры и массы атомов малы. Радиус атомов составляет 10 -10 м, а радиус ядра – 10 -15 м. Масса атома определяется делением массы одного моль атомов элемента на число атомов в 1 моль (NA = 6,02·10 23 моль -1 ). Масса атомов изменяется в пределах 10 -27

    10 -25 кг. Обычно массу атомов выражают в атомных единицах массы (а.е.м.). За а.е.м. принята 1/12 массы атома изотопа углерода 12 С.

    Основными характеристиками атома являются заряд его ядра (Z) и массовое число (А). Число электронов в атоме равно заряду его ядра. Свойства атомов определяются зарядом их ядер, числом электронов и их состоянием в атоме.

    Основные свойства и строение ядра (теория состава атомных ядер)

    1. Ядра атомов всех элементов (за исключением водорода) состоят из протонов и нейтронов.

    2.Число протонов в ядре определяет значение его положительного заряда (Z). Z — порядковый номер химического элемента в периодической системе Менделеева.

    3. Суммарное число протонов и нейтронов — значение его массы, так как масса атома в основном сосредоточена в ядре (99, 97% массы атома). Ядерные частицы — протоны и нейтроны — объединяются под общим названием нуклоны (от латинского слова nucleus, что означает “ядро”). Общее число нуклонов соответствует — массовому числу, т.е. округленной до целого числа его атомной массе А.

    Ядра с одинаковыми Z, но различными А называются изотопами. Ядра, которые при одинаковом А имеют различные Z, называются изобарами. Всего известно около 300 устойчивых изотопов химических элементов и более 2000 естественных и искусственно полученных радиоактивных изотопов

    4. Число нейтронов в ядре N может быть найдено по разности между массовым числом (А) и порядковым номером (Z):

    Читайте также:  Сочетание оранжевого в одежде фото

    5. Размер ядра характеризуется радиусом ядра, имеющим условный смысл ввиду размытости границы ядра.

    Плотность ядерного вещества составляет по порядку величины 10 17 кг/м 3 и постоянна для всех ядер. Она значительно превосходит плотности самых плотных обычных веществ.

    Протонно-нейтронная теория позволила разрешить возникшие ранее противоречия в представлениях о составе атомных ядер и о его связи с порядковым номером и атомной массой.

    Энергия связи ядра определяется величиной той работы, которую нужно совершить, чтобы расщепить ядро на составляющие его нуклоны без придания им кинетической энергии. Из закона сохранения энергии следует, что при образовании ядра должна выделяться такая же энергия, какую нужно затратить при расщеплении ядра на составляющие его нуклоны. Энергия связи ядра является разностью между энергией всех свободных нуклонов, составляющих ядро, и их энергией в ядре.

    При образовании ядра происходит уменьшение его массы: масса ядра меньше, чем сумма масс составляющих его нуклонов. Уменьшение массы ядра при его образовании объясняется выделением энергии связи. Если Wсв- величина энергии, выделяющейся при образовании ядра, то соответствующая ей масса Dm, равная

    (53)

    называется дефектом массы и характеризует уменьшение суммарной массы при образовании ядра из составляющих его нуклонов. Одной атомной единице массы соответствует атомная единица энергии (а.е.э.): а.е.э.=931,5016 МэВ.

    Удельной энергией связи ядра wсвназывается энергия связи, приходящаяся на один нуклон: wсв= . Величина wсвсоставляет в среднем 8 МэВ/нуклон. По мере увеличения числа нуклонов в ядре удельная энергия связи убывает.

    Критерием устойчивости атомных ядер является соотношение между числом протонов и нейтронов в устойчивом ядре для данных изобаров. (А= const).

    1. Ядерное взаимодействие свидетельствует о том, что в ядрах существуют особые ядерные силы, не сводящиеся ни к одному из типов сил, известных в классической физике (гравитационных и электромагнитных).

    2. Ядерные силы являются короткодействующими силами. Они проявляются лишь на весьма малых расстояниях между нуклонами в ядре порядка 10-15 м. Длина (1,5ј2,2)10-15 мназывается радиусом действия ядерных сил.

    3. Ядерные силы обнаруживают зарядовую независимость: притяжение между двумя нуклонами одинаково независимо от зарядового состояния нуклонов — протонного или нуклонного. Зарядовая независимость ядерных сил видна из сравнения энергий связи в зеркальных ядрах. Так называются ядра, в которых одинаково общее число нуклонов, но число протонов в одном равно числу нейтронов в другом. Например, ядра гелия тяжелого водорода трития — .

    4. Ядерные силы обладают свойством насыщения, которое проявляется в том, что нуклон в ядре взаимодействует лишь с ограниченным числом ближайших к нему соседних нуклонов. Именно поэтому наблюдается линейная зависимость энергий связи ядер от их массовых чисел (А). Практически полное насыщение ядерных сил достигается у a-частицы, которая является очень устойчивым образованием.

    Радиоактивность, g -излучение, a и b — распад

    1. Радиоактивностью называется превращение неустойчивых изотопов одного химического элемента в изотопы другого элемента, сопровождающееся испусканием элементарных частиц, ядер или жесткого рентгеновского излучения. Естественной радиоактивностью называется радиоактивность, наблюдающаяся у существующих в природе неустойчивых изотопов. Искусственной радиоактивностью называется радиоактивность изотопов, полученных в результате ядерных реакций.

    2. Обычно все типы радиоактивности сопровождаются испусканием гамма-излучения — жесткого, коротковолнового электроволнового излучения. Гамма-излучение является основной формой уменьшения энергии возбужденных продуктов радиоактивных превращений. Ядро, испытывающее радиоактивный распад, называется материнским; возникающее дочернее ядро, как правило, оказывается возбужденным, и его переход в основное состояние сопровождается испусканием g-фотона.

    3. Альфа-распадом называется испускание ядрами некоторых химических элементов a — частиц. Альфа-распад является свойством тяжелых ядер с массовыми числами А>200 и зарядами ядер Z>82. Внутри таких ядер происходит образование обособленных a-частиц, состоящих каждая из двух протонов и двух нейтронов, т.е. образуется атом элемента, смещенного в таблице периодической системы элементов Д.И. Менделеева (ПСЭ) на две клеточки влево от исходного радиоактивного элемента с массовым числом меньшим не 4 единицы (правило Содди – Фаянса):

    4. Термином бета-распад обозначают три типа ядерных превращений: электронный (b-) и позитронный (b+) распады, а также электронный захват.

    b- распад происходит преимущественно у сравнительно богатых нейтронами ядер. При этом нейтрон ядра распадается на протон, электрон и антинейтрино ( ) с нулевым зарядом и массой.

    При b- распаде массовое число изотопа не изменяется, так как общее число протонов и нейтронов сохраняется, а заряд увеличивается на 1. Поэтому, атом образовавшегося химического элемента смещается ПСЭ на одну клеточку вправо от исходного элемента, а его массовое число не изменяется (правило Содди – Фаянса):

    b+- распад происходит преимущественно у относительно богатых протонами ядер. При этом протон ядра распадается на нейтрон, позитрон и нейтрино ( ).

    .

    При b+- распаде массовое число изотопа не изменяется, так как общее число протонов и нейтронов сохраняется, а заряд уменьшается на 1. Поэтому, атом образовавшегося химического элемента смещается ПСЭ на одну клеточку влево от исходного элемента, а его массовое число не изменяется (правило Содди – Фаянса):

    5. В случае электронного захвата превращение заключается в том, что исчезает один из электронов в ближайшем к ядру слое. Протон, превращаясь в нейтрон, как бы “захватывает” электрон; отсюда произошел термин ”электронный захват”. Электронный захват в отличие от b±-захвата сопровождается характеристическим рентгеновским излучением.

    6. b—распад происходит у естественно-радиоактивных, а также искусственно-радиоактивных ядер; b+-распад характерен только для явления искусственной радиоактивности.

    7. g- излучение: при возбуждении ядро атома испускает электромагнитное излучение с малой длиной волны и высокой частотой, обладающее большой жесткостью и проникающей способностью, чем рентгеновское излучение. В результате энергия ядра уменьшается, а массовое число и заряд ядра остаются не низменными. Поэтому превращение химического элемента в другой не наблюдается, а ядро атома переходит в менее возбужденное состояние.

    Последнее изменение этой страницы: 2016-08-26; Нарушение авторского права страницы

    Лаборатория Нейтронной Физики им. И.М. Франка
    Объединенный Институт Ядерных Исследований

    • Главная
    • Образование
    • Свойства нейтронов

    Свойства нейтронов

    1.1. История нейтронного рассеяния.

    В 1935 году профессор Джеймс Чадвик был удостоен Нобелевской премии за открытие нейтронов. Энрико Ферми в 1942 году показал, что нейтроны, которые образуются в результате деления ядра урана, могут поддерживать контролируемую цепную реакцию. Еще раньше, в 1938 году, он был удостоен нобелевской премии за открытие того, что замедленные нейтроны легко взаимодействуют с окружающим веществом и могут быть использованы для определения положений и колебаний атомов вещества. В конце Второй мировой войны исследователи из США получили доступ к большим потокам нейтронов, которые производились на впервые построенных ядерных реакторах. Первые эксперименты по нейтронной дифракции были выполнены Эрнестом Воланом в 1945 году на Графитовом реакторе в Лаборатории Окридж, США. Совместно с Клиффордом Шуллом они сформировали принципы данного экспериментального метода исследования и успешно применили его к исследованию различных материалов. Клиффорд Шулл и Бертрам Брокхаус показали, что направления, в которых нейтроны «упруго» рассеиваются без изменения энергии, дают информацию о положении и упорядочении атомов вещества. В 1994 году Шулл и Брокхаус были удостоены Нобелевской премии за их новаторские подходы и идеи в развитии методов нейтронного рассеяния.

    Читайте также:  Светодиодный светильник стал моргать

    За прошедшие 50 лет все больше ученых в областях физики, химии, биологии, материаловедения, геологии и многих других обращаются к использованию нейтронного рассеяния в поисках ответов на наиболее сложные проблемы в их областях исследований.

    1.2. Источники нейтронов.

    В настоящее время рассеяние нейтронов практических уходит от изучения атомной и магнитной структуры и динамики простых кристаллов. Акцент все более делается на изучении наноструктур, разупорядоченных систем, сложных химических реакций, процессов катализа. Расширяется активность в области исследования сложных жидкостей, самоорганизующихся систем, экзотических электронных состояний.

    Все эти задачи могут быть поставлены и решены только на современных высокопоточных источниках нейтронов: ядерных реакторах, где используется контролируемая реакция деления ядер урана или плутония, или испарительных источниках на базе протонных ускорителей при бомбардировке тяжелых ядер протонами высоких энергий. Поток нейтронов может быть либо постоянным, либо пульсирующим. При таких процессах производимые нейтроны имеют большие значения энергии, что требует дополнительной установки на источник замедлителей нейтронов. В результате формируется поток нейтронов с длинами волн, сравнимыми с межатомными расстояниями в жидкостях и твердых телах, с кинетическими энергиями, сравнимыми с динамическими процессами в веществе. Как правило, замедлители изготавливаются из алюминия и заполняются жидким водородом, или жидким метаном (в зависимости от необходимых параметров выходящего нейтронного пучка).

    Наиболее интенсивные источники нейтронов являются очень дорогими при создании и в обслуживании, и их количество в мире, вообще говоря, мало. В 1950 году был построен первый реактор, предназначенный непосредственно для научных исследований. Его единственной целью было производство как можно большей интенсивности нейтронного излучения. Со временем нейтронные источники превратились в универсальные научно-исследовательские установки, применимые в широком спектре экспериментальных исследований. В настоящее время чуть больше 30 лабораторий в мире оборудованы средне- и высокопоточными нейтронными установками. Научно-исследовательские нейтронные источники являются исключительно источниками нейтронов и неприменимы для каких либо других целей.

    1.3. Свойства нейтронов.

    Нейтрон является электрически нейтральной элементарной частицей, одной из составных частей ядра атома, с массой почти в 2000 раз тяжелее электрона. Время жизни нейтрона как свободной частицы около 15 минут, несмотря на то, что в связанном состоянии в ядре атома нейтрон является стабильной частицей.

    Основные свойства нейтронов, применяемые в нейтронном рассеянии:

    • Энергия замедленных нейтронов сравнима с энергией атомных и молекулярных движений, и находится в диапазоне от мэВ до эВ.
    • Длина волны замедленных нейтронов сравнима с межатомными расстояниями, что позволяет исследовать структуру вещества в диапазоне 10 -5 – 10 5 Å.
    • Поскольку нейтроны являются нейтральными частицами, они взаимодействуют с ядрами атомов, а не с диффузными электронными оболочками. Сечение рассеяния нейтронов на близких по массе ядрах может существенно отличаться, это дает возможность «видеть» легкие ядра на фоне тяжелых, эффективно применять метод изотопного замещения, легко различать соседние элементы. Эта особенность является большим преимуществом перед методом рентгеновского рассеяния, в котором излучение рассеивается на электронной оболочке атомов.
    • наличие магнитного момента у нейтронов позволяет изучать микроскопическую магнитную структуру и магнитные флуктуации, которые определяют макроскопические параметры вещества.
    • Нейтронное излучение является глубоко проникающим вглубь вещества, что позволяет проводить исследования микроскопических свойств, типа микротрещин, промышленных объектов. Подобные исследования невозможно выполнить с помощью оптических методов, рентгеновского рассеяния или электронной микроскопии.
    • Нейтроны являются безвредным, неповреджающим излучением даже в случае исследования живых биологических систем.

    Основное отличие нейтронного излучения от рентгеновского в том, что рассеяние нейтронов происходит на ядрах атомов. Следовательно, отсутствует необходимость учитывать атомный форм-фактор для описания формы электронного облака атома, кроме того, рассеивающая способность атома не убывает с увеличением угла рассеяния, что наблюдается для рентгеновского рассеяния. Дифрактограммы в нейтронном рассеянии имеют четкие пики рассеяния даже при больших углах рассеяния.

    Следует так же указать на одну важную особенность нейтронного излучения. Рентгеновское рассеяние практически нечувствительно к наличию атомов водорода в структуре, в то время как ядра водорода и дейтерия являются сильными рассеивателями для нейтронного излучения. Это означает, что с помощью нейтронов возможно намного более точно определить положение водорода и его тепловые колебания в кристаллической структуре. Более того, длины нейтронного рассеяния водорода и дейтерия имеют противоположные знаки, что позволяет применять технику «вариации контраста». Изменяя изотопный состав буфера образца (варьируя количество водорода и дейтерия), экспериментатор получает возможность менять вклад в рассеяние различных составных частей исследуемого объекта. На практике, тем не менее, не желательно работать с большими концентрациями водорода в образце, поскольку нейтронное рассеяние имеет большую неупругую компоненту при рассеянии на водороде. Это приводит к образованию большого фона, слабо зависящего от угла рассеяния и пики упругого рассеяния «погружаются» в фоне неупругого рассеяния. Особенно эта проблема возникает при исследовании жидких образцов на основе воды. Варьирование других изотопов помимо водорода и дейтерия возможно, но, как правило, является очень дорогим решением. Водород является относительно недорогим и в то же время интересным элементом, потому что он играет исключительно большую роль в биохимической структуре вещества.

    Понравилась статья? Поделиться с друзьями:
    ТурбоЗайм
    Добавить комментарий

    ;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

    Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.

    Свойства протонов и нейтронов

    Нейтрон ( n , n 0 <displaystyle n,n^<0>> )
    Семья фермион
    Группа адрон, барион, N-барион, нуклон
    Участвует во взаимодействиях Сильное, слабое, электромагнитное и гравитационное
    Античастица антинейтрон ( n ¯ , n ¯ 0 ) <displaystyle (<ar >,<ar >^<0>)>
    Масса 939,565 420 52(54) МэВ [1] , 1,674 927 498 04(95)⋅10 −27 кг [2] , 1,008 664 915 95(49) а. е. м. [3]
    Время жизни 880,0 ± 0,9 c [4]
    В честь кого или чего названа От лат. корня neutral и обычного для частиц суффикса on (он)
    Квантовые числа
    Электрический заряд
    Барионное число 1
    Спин 1/2 ħ
    Магнитный момент −1,913 042 73(45) ядерного магнетона [5] , или −9,662 365 1(23)×10 −27 Дж/Тл [6]
    Внутренняя чётность 1
    Изотопический спин −1/2
    Странность
    Очарование
    Другие свойства
    Кварковый состав udd
    Схема распада p + + e − + ν ¯ e <displaystyle p^<+>+e^<->+<ar <
    u >>_> (99,7%);
    p + + e − + ν ¯ e + γ <displaystyle p^<+>+e^<->+<ar <
    u >>_
    +gamma > (0,309%)
    Теоретически обоснована В 1930 году В. А. Амбарцумян и Д. Д. Иваненко; в 1930 году Вальтер Боте и его студент Герберт Беккер, работавшие в Германии
    Обнаружена 27 февраля 1932, Джеймс Чедвик
    Медиафайлы на Викискладе

    Нейтро́н (от лат. neuter — ни тот, ни другой) — тяжёлая элементарная частица, не имеющая электрического заряда. Нейтрон является фермионом и принадлежит к классу барионов. Нейтроны и протоны являются двумя главными компонентами атомных ядер [7] ; общее название для протонов и нейтронов — нуклоны.

    Содержание

    Открытие [ править | править код ]

    Открытие нейтрона (27 февраля 1932) принадлежит физику Джеймсу Чедвику, который объяснил результаты опытов В. Боте и Г. Беккера (1930), в которых обнаружилось, что вылетающие при распаде полония α-частицы, воздействуя на лёгкие элементы, приводят к возникновению сильно проникающего излучения. Чедвик первый предположил, что новое проникающее излучение состоит из нейтронов, и определил их массу [8] [9] . За это открытие он получил Нобелевскую премию по физике в 1935 году.

    В 1930 году В. А. Амбарцумян и Д. Д. Иваненко показали, что атом не может, как считалось в то время, состоять только из протонов и электронов, что электроны, вылетающие из ядра при бета-распаде, рождаются в момент распада, и что кроме протонов, в ядре должны присутствовать некие нейтральные частицы [10] [11] .

    В 1930 году Вальтер Боте и его студент Герберт Беккер, работавшие в Германии, обнаружили, что если высокоэнергетичные альфа-частицы, испускаемые полонием-210, попадают на некоторые лёгкие элементы, в особенности на бериллий или литий, образуется излучение с необычно большой проникающей способностью. Сначала считалось, что это — гамма-излучение, но выяснилось, что оно обладает гораздо большей проникающей способностью, чем все известные гамма-лучи, и результаты эксперимента не могут быть таким образом интерпретированы. Важный вклад сделали в 1932 году Ирен и Фредерик Жолио-Кюри. Они показали, что если это неизвестное излучение попадает на парафин или любое другое соединение, богатое водородом, образуются протоны высоких энергий. Само по себе это ничему не противоречило, но численные результаты приводили к нестыковкам в теории. Позднее в том же 1932 году английский физик Джеймс Чедвик провёл серию экспериментов, в которых он показал, что гамма-лучевая гипотеза несостоятельна. Он предположил, что это излучение состоит из незаряженных частиц с массой, близкой к массе протона, и провёл серию экспериментов, подтвердивших эту гипотезу. Эти незаряженные частицы были названы нейтронами от латинского корня neutral и обычного для частиц суффикса on (он). В том же 1932 году Д. Д. Иваненко [12] и затем В. Гейзенберг предположили, что атомное ядро состоит из протонов и нейтронов.

    Основные характеристики [ править | править код ]

    • Масса (примерно на 0,1378 % больше, чем масса протона; приведены рекомендованные значения CODATA 2014 года, в скобках указана погрешность величины в единицах последней значимой цифры, одно стандартное отклонение):
    • 939,565 420 52(54) МэВ [1] ;
    • 1,008 664 915 95(49) а. е. м.[3] ;
    • 1,674 927 498 04(95)⋅10 −27 кг [2] ;
    • 1 838,683 661 73(89) массы электрона[13] .
  • Электрический заряд: 0. Экспериментально измеренное значение совместимо с нулём: (−0,2 ± 0,8)⋅10 −21 элементарного электрического заряда[4] .
  • Спин: 1 2 (фермион). Спин свободного нейтрона измеряется методом когерентного отражения от магнитных зеркал [14] .
  • Время жизни в свободном состоянии: τ = 880,0 ± 0,9 секунды [4][15] (период полураспадаT1/2 = τ·ln 2 = 610,0 ± 0,6 секунды) [16] .
  • Магнитный момент: −1,913 042 73(45) ядерного магнетона[5] , или −9,662 365 1(23)×10 −27 Дж/Тл[6] . Магнитный момент нейтрона измеряется с помощью резонансного метода молекулярных пучков [14] .
  • Внутренняя чётность: равна 1 [17] .
  • Несмотря на нулевой электрический заряд, нейтрон не является истинно нейтральной частицей. Античастицей нейтрона является антинейтрон, который не совпадает с самим нейтроном. Нейтрон аннигилирует с антинейтроном и другими антиадронами (в частности, с антипротоном).

    С нейтроном связаны несколько физических величин, имеющих размерность длины:

    • комптоновская длина волны нейтрона λ K = 2 π ℏ m c ≈ 1 , 32 ⋅ 10 − 13 <displaystyle lambda _=<frac <2pi hbar >>approx 1<,>32cdot 10^<-13>>см;
    • расстояние от центра нейтрона до максимума плотности отрицательного электрического заряда (зарядовый радиус) R E ≈ 0 , 75 ⋅ 10 − 13 <displaystyle R_approx 0<,>75cdot 10^<-13>>см [18] ;
    • отношение электрического дипольного момента нейтрона к элементарному заряду | d n e | 2 , 9 ⋅ 10 − 26 <displaystyle left|<frac >>
      ight| см [4] ;
    • гравитационный радиус нейтрона R G = 2 G m c 2 ≈ 2 , 48 ⋅ 10 − 52 <displaystyle R_=<frac <2Gm><2>>>approx 2<,>48cdot 10^<-52>>см.

    Строение и распад [ править | править код ]

    Считается надёжно установленным, что нейтрон является связанным состоянием трёх кварков: одного «верхнего» (u) и двух «нижних» (d) кварков (кварковая структура udd). Близость значений масс протона и нейтрона обусловлена свойством приближённой изотопической инвариантности: в протоне (кварковая структура uud) один d-кварк заменяется на u-кварк, но поскольку массы этих кварков очень близки, такая замена слабо сказывается на массе составной частицы.

    Поскольку нейтрон тяжелее протона (на 1,293 332 36(46) МэВ [19] , или 0,001 388 449 33(49) а.е.м. [20] ), то он может распадаться в свободном состоянии. Единственным каналом распада, разрешённым законом сохранения энергии и законами сохранения электрического заряда, барионного и лептонного квантовых чисел, является бета-распад нейтрона на протон, электрон и электронное антинейтрино (а также, возможно, гамма-квант [21] ). Поскольку этот распад идёт с образованием лептонов и изменением аромата кварков, то он обязан происходить только за счёт слабого взаимодействия. Однако ввиду специфических свойств слабого взаимодействия, скорость этой реакции аномально мала из-за крайне малого энерговыделения (разности масс начальных и конечных частиц). Именно этим объясняется тот факт, что нейтрон является настоящим долгожителем среди элементарных частиц: его время жизни, приблизительно равное 15 минутам , это примерно в миллиард раз больше времени жизни мюона — следующей за нейтроном метастабильной частицы по времени жизни.

    Читайте также:  Строительство уличного туалета своими руками

    Кроме того, разница масс между протоном и нейтроном, составляющая около 1,3 МэВ , невелика по меркам ядерной физики. Вследствие этого в ядрах нейтрон может находиться в более глубокой потенциальной яме, чем протон, и потому бета-распад нейтрона оказывается энергетически невыгодным. Это приводит к тому, что в ядрах нейтрон может быть стабильным. Более того, в нейтроно-дефицитных ядрах происходит бета-распад протона в нейтрон (с захватом орбитального электрона или вылетом позитрона); этот процесс энергетически запрещён для свободного протона.

    На кварковом уровне бета-распад нейтрона может быть описан как превращение одного из d-кварков в u-кварк с испусканием виртуального W − -бозона, который немедленно распадается на электрон и электронное антинейтрино.

    Изучение распада свободного нейтрона важно для уточнения свойств слабого взаимодействия, а также поиска нарушений временно́й инвариантности, нейтрон-антинейтронных осцилляций и т. п.

    Внутренняя структура нейтрона впервые была экспериментально исследована Р. Хофштадтером путём изучения столкновений пучка электронов высоких энергий ( 2 ГэВ ) с нейтронами, входящими в состав дейтрона (Нобелевская премия по физике 1961 г.) [22] . Нейтрон состоит из тяжёлой сердцевины (керна) радиусом ≈ 0,25·10 −13 см , с высокой плотностью массы и заряда, которая имеет общий заряд ≈ +0,35 e , и окружающей его относительно разреженной оболочки («мезонной шубы»). На расстоянии от ≈ 0,25·10 −13 до ≈ 1,4·10 −13 см эта оболочка состоит в основном из виртуальных ρ — и π -мезонов и обладает общим зарядом ≈ −0,50 e . Дальше расстояния ≈ 2,5·10 −13 см от центра простирается оболочка из виртуальных ω — и π -мезонов, несущих суммарный заряд около +0,15 e [23] [18] .

    Иные свойства [ править | править код ]

    Изоспины нейтрона и протона одинаковы ( 1 2 ), но их проекции противоположны по знаку. Проекция изоспина нейтрона по соглашению в физике элементарных частиц принимается равной − 1 2 , в ядерной физике + 1 2 (поскольку в большинстве ядер нейтронов больше, чем протонов, это соглашение позволяет избегать отрицательных суммарных проекций изоспина).

    Нейтрон и протон вместе с Λ , Σ , Ξ <displaystyle Lambda ,Sigma ,Xi > — барионами входят в состав октета барионов со спином 1 2 <displaystyle < frac <1><2>>> и барионным зарядом 1 <displaystyle 1> . [24]

    Нейтрон — единственная из имеющих массу покоя элементарных частиц, для которой непосредственно наблюдалось гравитационное взаимодействие — искривление в поле земного тяготения траектории хорошо коллимированного пучка ультрахолодных нейтронов. Измеренное гравитационное ускорение нейтронов в пределах точности эксперимента совпадает с гравитационным ускорением макроскопических тел. [25]

    При огромном давлении внутри нейтронной звезды нейтроны могут деформироваться вплоть до того, что приобретают форму куба [26] .

    Направления исследований в физике нейтронов [ править | править код ]

    • возможность существования тетранейтронов и иных связанных состояний из одних только нейтронов
    • поиск возможных нейтрон-антинейтронных осцилляций
    • поиск электрического дипольного момента нейтрона. Электрический дипольный момент нейтрона был бы точно равен нулю, если бы имела место инвариантность всех взаимодействий, в которых участвует нейтрон, относительно операции отражения времени. Слабые взаимодействия неинвариантны относительно операции отражения времени. Вследствие этого нейтрон должен был бы обладать электрическим дипольным моментом. Причина отсутствия электрического дипольного момента у нейтрона неизвестна. [27]
    • изучение свойств сильно нейтроно-избыточных лёгких ядер
    • получение и хранение холодных нейтронов
    • влияние потоков нейтронов на живые ткани и организмы
    • влияние сверхмощных потоков нейтронов на свойства материалов
    • изучение распространения нейтронов в различных средах
    • изучение различных типов структуры в физике конденсированных сред
    • нейтронно-дифракционный анализ
    • нейтронно-активационный анализ
    Частица Символ Масса покоя Заряд, Кл
    кг а.е.м.
    протон р 1,678·10 -27 1,007276 1,602·10 -19
    нейтрон п 1,675·10 -27 1,008665
    электрон е 9,108·10 -31 0,00549 1,602·10 -19

    Размеры и массы атомов малы. Радиус атомов составляет 10 -10 м, а радиус ядра – 10 -15 м. Масса атома определяется делением массы одного моль атомов элемента на число атомов в 1 моль (NA = 6,02·10 23 моль -1 ). Масса атомов изменяется в пределах 10 -27

    10 -25 кг. Обычно массу атомов выражают в атомных единицах массы (а.е.м.). За а.е.м. принята 1/12 массы атома изотопа углерода 12 С.

    Основными характеристиками атома являются заряд его ядра (Z) и массовое число (А). Число электронов в атоме равно заряду его ядра. Свойства атомов определяются зарядом их ядер, числом электронов и их состоянием в атоме.

    Основные свойства и строение ядра (теория состава атомных ядер)

    1. Ядра атомов всех элементов (за исключением водорода) состоят из протонов и нейтронов.

    2.Число протонов в ядре определяет значение его положительного заряда (Z). Z — порядковый номер химического элемента в периодической системе Менделеева.

    3. Суммарное число протонов и нейтронов — значение его массы, так как масса атома в основном сосредоточена в ядре (99, 97% массы атома). Ядерные частицы — протоны и нейтроны — объединяются под общим названием нуклоны (от латинского слова nucleus, что означает “ядро”). Общее число нуклонов соответствует — массовому числу, т.е. округленной до целого числа его атомной массе А.

    Ядра с одинаковыми Z, но различными А называются изотопами. Ядра, которые при одинаковом А имеют различные Z, называются изобарами. Всего известно около 300 устойчивых изотопов химических элементов и более 2000 естественных и искусственно полученных радиоактивных изотопов

    4. Число нейтронов в ядре N может быть найдено по разности между массовым числом (А) и порядковым номером (Z):

    Читайте также:  Светодиодный светильник стал моргать

    5. Размер ядра характеризуется радиусом ядра, имеющим условный смысл ввиду размытости границы ядра.

    Плотность ядерного вещества составляет по порядку величины 10 17 кг/м 3 и постоянна для всех ядер. Она значительно превосходит плотности самых плотных обычных веществ.

    Протонно-нейтронная теория позволила разрешить возникшие ранее противоречия в представлениях о составе атомных ядер и о его связи с порядковым номером и атомной массой.

    Энергия связи ядра определяется величиной той работы, которую нужно совершить, чтобы расщепить ядро на составляющие его нуклоны без придания им кинетической энергии. Из закона сохранения энергии следует, что при образовании ядра должна выделяться такая же энергия, какую нужно затратить при расщеплении ядра на составляющие его нуклоны. Энергия связи ядра является разностью между энергией всех свободных нуклонов, составляющих ядро, и их энергией в ядре.

    При образовании ядра происходит уменьшение его массы: масса ядра меньше, чем сумма масс составляющих его нуклонов. Уменьшение массы ядра при его образовании объясняется выделением энергии связи. Если Wсв- величина энергии, выделяющейся при образовании ядра, то соответствующая ей масса Dm, равная

    (53)

    называется дефектом массы и характеризует уменьшение суммарной массы при образовании ядра из составляющих его нуклонов. Одной атомной единице массы соответствует атомная единица энергии (а.е.э.): а.е.э.=931,5016 МэВ.

    Удельной энергией связи ядра wсвназывается энергия связи, приходящаяся на один нуклон: wсв= . Величина wсвсоставляет в среднем 8 МэВ/нуклон. По мере увеличения числа нуклонов в ядре удельная энергия связи убывает.

    Критерием устойчивости атомных ядер является соотношение между числом протонов и нейтронов в устойчивом ядре для данных изобаров. (А= const).

    1. Ядерное взаимодействие свидетельствует о том, что в ядрах существуют особые ядерные силы, не сводящиеся ни к одному из типов сил, известных в классической физике (гравитационных и электромагнитных).

    2. Ядерные силы являются короткодействующими силами. Они проявляются лишь на весьма малых расстояниях между нуклонами в ядре порядка 10-15 м. Длина (1,5ј2,2)10-15 мназывается радиусом действия ядерных сил.

    3. Ядерные силы обнаруживают зарядовую независимость: притяжение между двумя нуклонами одинаково независимо от зарядового состояния нуклонов — протонного или нуклонного. Зарядовая независимость ядерных сил видна из сравнения энергий связи в зеркальных ядрах. Так называются ядра, в которых одинаково общее число нуклонов, но число протонов в одном равно числу нейтронов в другом. Например, ядра гелия тяжелого водорода трития — .

    4. Ядерные силы обладают свойством насыщения, которое проявляется в том, что нуклон в ядре взаимодействует лишь с ограниченным числом ближайших к нему соседних нуклонов. Именно поэтому наблюдается линейная зависимость энергий связи ядер от их массовых чисел (А). Практически полное насыщение ядерных сил достигается у a-частицы, которая является очень устойчивым образованием.

    Радиоактивность, g -излучение, a и b — распад

    1. Радиоактивностью называется превращение неустойчивых изотопов одного химического элемента в изотопы другого элемента, сопровождающееся испусканием элементарных частиц, ядер или жесткого рентгеновского излучения. Естественной радиоактивностью называется радиоактивность, наблюдающаяся у существующих в природе неустойчивых изотопов. Искусственной радиоактивностью называется радиоактивность изотопов, полученных в результате ядерных реакций.

    2. Обычно все типы радиоактивности сопровождаются испусканием гамма-излучения — жесткого, коротковолнового электроволнового излучения. Гамма-излучение является основной формой уменьшения энергии возбужденных продуктов радиоактивных превращений. Ядро, испытывающее радиоактивный распад, называется материнским; возникающее дочернее ядро, как правило, оказывается возбужденным, и его переход в основное состояние сопровождается испусканием g-фотона.

    3. Альфа-распадом называется испускание ядрами некоторых химических элементов a — частиц. Альфа-распад является свойством тяжелых ядер с массовыми числами А>200 и зарядами ядер Z>82. Внутри таких ядер происходит образование обособленных a-частиц, состоящих каждая из двух протонов и двух нейтронов, т.е. образуется атом элемента, смещенного в таблице периодической системы элементов Д.И. Менделеева (ПСЭ) на две клеточки влево от исходного радиоактивного элемента с массовым числом меньшим не 4 единицы (правило Содди – Фаянса):

    4. Термином бета-распад обозначают три типа ядерных превращений: электронный (b-) и позитронный (b+) распады, а также электронный захват.

    b- распад происходит преимущественно у сравнительно богатых нейтронами ядер. При этом нейтрон ядра распадается на протон, электрон и антинейтрино ( ) с нулевым зарядом и массой.

    При b- распаде массовое число изотопа не изменяется, так как общее число протонов и нейтронов сохраняется, а заряд увеличивается на 1. Поэтому, атом образовавшегося химического элемента смещается ПСЭ на одну клеточку вправо от исходного элемента, а его массовое число не изменяется (правило Содди – Фаянса):

    b+- распад происходит преимущественно у относительно богатых протонами ядер. При этом протон ядра распадается на нейтрон, позитрон и нейтрино ( ).

    .

    При b+- распаде массовое число изотопа не изменяется, так как общее число протонов и нейтронов сохраняется, а заряд уменьшается на 1. Поэтому, атом образовавшегося химического элемента смещается ПСЭ на одну клеточку влево от исходного элемента, а его массовое число не изменяется (правило Содди – Фаянса):

    5. В случае электронного захвата превращение заключается в том, что исчезает один из электронов в ближайшем к ядру слое. Протон, превращаясь в нейтрон, как бы “захватывает” электрон; отсюда произошел термин ”электронный захват”. Электронный захват в отличие от b±-захвата сопровождается характеристическим рентгеновским излучением.

    6. b—распад происходит у естественно-радиоактивных, а также искусственно-радиоактивных ядер; b+-распад характерен только для явления искусственной радиоактивности.

    7. g- излучение: при возбуждении ядро атома испускает электромагнитное излучение с малой длиной волны и высокой частотой, обладающее большой жесткостью и проникающей способностью, чем рентгеновское излучение. В результате энергия ядра уменьшается, а массовое число и заряд ядра остаются не низменными. Поэтому превращение химического элемента в другой не наблюдается, а ядро атома переходит в менее возбужденное состояние.

    Последнее изменение этой страницы: 2016-08-26; Нарушение авторского права страницы

    Лаборатория Нейтронной Физики им. И.М. Франка
    Объединенный Институт Ядерных Исследований

    • Главная
    • Образование
    • Свойства нейтронов

    Свойства нейтронов

    1.1. История нейтронного рассеяния.

    В 1935 году профессор Джеймс Чадвик был удостоен Нобелевской премии за открытие нейтронов. Энрико Ферми в 1942 году показал, что нейтроны, которые образуются в результате деления ядра урана, могут поддерживать контролируемую цепную реакцию. Еще раньше, в 1938 году, он был удостоен нобелевской премии за открытие того, что замедленные нейтроны легко взаимодействуют с окружающим веществом и могут быть использованы для определения положений и колебаний атомов вещества. В конце Второй мировой войны исследователи из США получили доступ к большим потокам нейтронов, которые производились на впервые построенных ядерных реакторах. Первые эксперименты по нейтронной дифракции были выполнены Эрнестом Воланом в 1945 году на Графитовом реакторе в Лаборатории Окридж, США. Совместно с Клиффордом Шуллом они сформировали принципы данного экспериментального метода исследования и успешно применили его к исследованию различных материалов. Клиффорд Шулл и Бертрам Брокхаус показали, что направления, в которых нейтроны «упруго» рассеиваются без изменения энергии, дают информацию о положении и упорядочении атомов вещества. В 1994 году Шулл и Брокхаус были удостоены Нобелевской премии за их новаторские подходы и идеи в развитии методов нейтронного рассеяния.

    Читайте также:  Способы утепления пола первого этажа

    За прошедшие 50 лет все больше ученых в областях физики, химии, биологии, материаловедения, геологии и многих других обращаются к использованию нейтронного рассеяния в поисках ответов на наиболее сложные проблемы в их областях исследований.

    1.2. Источники нейтронов.

    В настоящее время рассеяние нейтронов практических уходит от изучения атомной и магнитной структуры и динамики простых кристаллов. Акцент все более делается на изучении наноструктур, разупорядоченных систем, сложных химических реакций, процессов катализа. Расширяется активность в области исследования сложных жидкостей, самоорганизующихся систем, экзотических электронных состояний.

    Все эти задачи могут быть поставлены и решены только на современных высокопоточных источниках нейтронов: ядерных реакторах, где используется контролируемая реакция деления ядер урана или плутония, или испарительных источниках на базе протонных ускорителей при бомбардировке тяжелых ядер протонами высоких энергий. Поток нейтронов может быть либо постоянным, либо пульсирующим. При таких процессах производимые нейтроны имеют большие значения энергии, что требует дополнительной установки на источник замедлителей нейтронов. В результате формируется поток нейтронов с длинами волн, сравнимыми с межатомными расстояниями в жидкостях и твердых телах, с кинетическими энергиями, сравнимыми с динамическими процессами в веществе. Как правило, замедлители изготавливаются из алюминия и заполняются жидким водородом, или жидким метаном (в зависимости от необходимых параметров выходящего нейтронного пучка).

    Наиболее интенсивные источники нейтронов являются очень дорогими при создании и в обслуживании, и их количество в мире, вообще говоря, мало. В 1950 году был построен первый реактор, предназначенный непосредственно для научных исследований. Его единственной целью было производство как можно большей интенсивности нейтронного излучения. Со временем нейтронные источники превратились в универсальные научно-исследовательские установки, применимые в широком спектре экспериментальных исследований. В настоящее время чуть больше 30 лабораторий в мире оборудованы средне- и высокопоточными нейтронными установками. Научно-исследовательские нейтронные источники являются исключительно источниками нейтронов и неприменимы для каких либо других целей.

    1.3. Свойства нейтронов.

    Нейтрон является электрически нейтральной элементарной частицей, одной из составных частей ядра атома, с массой почти в 2000 раз тяжелее электрона. Время жизни нейтрона как свободной частицы около 15 минут, несмотря на то, что в связанном состоянии в ядре атома нейтрон является стабильной частицей.

    Основные свойства нейтронов, применяемые в нейтронном рассеянии:

    • Энергия замедленных нейтронов сравнима с энергией атомных и молекулярных движений, и находится в диапазоне от мэВ до эВ.
    • Длина волны замедленных нейтронов сравнима с межатомными расстояниями, что позволяет исследовать структуру вещества в диапазоне 10 -5 – 10 5 Å.
    • Поскольку нейтроны являются нейтральными частицами, они взаимодействуют с ядрами атомов, а не с диффузными электронными оболочками. Сечение рассеяния нейтронов на близких по массе ядрах может существенно отличаться, это дает возможность «видеть» легкие ядра на фоне тяжелых, эффективно применять метод изотопного замещения, легко различать соседние элементы. Эта особенность является большим преимуществом перед методом рентгеновского рассеяния, в котором излучение рассеивается на электронной оболочке атомов.
    • наличие магнитного момента у нейтронов позволяет изучать микроскопическую магнитную структуру и магнитные флуктуации, которые определяют макроскопические параметры вещества.
    • Нейтронное излучение является глубоко проникающим вглубь вещества, что позволяет проводить исследования микроскопических свойств, типа микротрещин, промышленных объектов. Подобные исследования невозможно выполнить с помощью оптических методов, рентгеновского рассеяния или электронной микроскопии.
    • Нейтроны являются безвредным, неповреджающим излучением даже в случае исследования живых биологических систем.

    Основное отличие нейтронного излучения от рентгеновского в том, что рассеяние нейтронов происходит на ядрах атомов. Следовательно, отсутствует необходимость учитывать атомный форм-фактор для описания формы электронного облака атома, кроме того, рассеивающая способность атома не убывает с увеличением угла рассеяния, что наблюдается для рентгеновского рассеяния. Дифрактограммы в нейтронном рассеянии имеют четкие пики рассеяния даже при больших углах рассеяния.

    Следует так же указать на одну важную особенность нейтронного излучения. Рентгеновское рассеяние практически нечувствительно к наличию атомов водорода в структуре, в то время как ядра водорода и дейтерия являются сильными рассеивателями для нейтронного излучения. Это означает, что с помощью нейтронов возможно намного более точно определить положение водорода и его тепловые колебания в кристаллической структуре. Более того, длины нейтронного рассеяния водорода и дейтерия имеют противоположные знаки, что позволяет применять технику «вариации контраста». Изменяя изотопный состав буфера образца (варьируя количество водорода и дейтерия), экспериментатор получает возможность менять вклад в рассеяние различных составных частей исследуемого объекта. На практике, тем не менее, не желательно работать с большими концентрациями водорода в образце, поскольку нейтронное рассеяние имеет большую неупругую компоненту при рассеянии на водороде. Это приводит к образованию большого фона, слабо зависящего от угла рассеяния и пики упругого рассеяния «погружаются» в фоне неупругого рассеяния. Особенно эта проблема возникает при исследовании жидких образцов на основе воды. Варьирование других изотопов помимо водорода и дейтерия возможно, но, как правило, является очень дорогим решением. Водород является относительно недорогим и в то же время интересным элементом, потому что он играет исключительно большую роль в биохимической структуре вещества.

    Понравилась статья? Поделиться с друзьями:
    ТурбоЗайм
    Добавить комментарий

    ;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

    Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.

    Adblock detector