Таблица состояний rs триггера

RS триггер получил название по названию своих входов. Вход S (Set — установить англ.) позволяет устанавливать выход триггера Q в единичное состояние (записывать единицу). Вход R (Reset — сбросить англ.) позволяет сбрасывать выход триггера Q (Quit — выход англ.) в нулевое состояние (записывать ноль).

В простейшем случае RS триггер это два логических элемента "2И-НЕ", соединенные последовательно друг с другом. Его принципиальная схема приведена на рисунке 1. Обратите внимание, что у триггера только один выход. Обозначим его Q. Тогда оставшийся вывод схемы будет инверсным выходом Q


Рисунок 1. Схема простейшего rs триггера на схемах "2И-НЕ". Входы R и S инверсные (активный уровень’0′)

Рассмотрим принцип работы RS триггера, выполненный по изображенной на рисунке 1 схеме подробнее. Пусть на входы R и S подаются единичные потенциалы. Если на выходе верхнего логического элемента "2И-НЕ" Q присутствует логический ноль, то на выходе нижнего логического элемента "2И-НЕ" появится логическая единица. Эта единица подтвердит логический ноль на выходе Q. Если на выходе верхнего логического элемента "2И-НЕ" Q первоначально присутствует логическая единица, то на выходе нижнего логического элемента "2И-НЕ" появится логический ноль. Этот ноль подтвердит логическую единицу на выходе Q. То есть при единичных входных уровнях схема RS триггера работает точно так же как и схема на инверторах.

Подадим на вход S нулевой потенциал. Согласно таблице истинности логического элемента "И-НЕ" на выходе Q появится единичный потенциал. Это приведёт к появлению на инверсном выходе триггера нулевого потенциала. Теперь, даже если снять нулевой потенциал с входа S, на выходе триггера останется единичный потенциал. То есть мы записали в триггер логическую единицу.

Точно так же можно записать в RS-триггер и логический ноль. Для этого следует воспользоваться входом R. Так как активный уровень на входах оказался нулевым, то эти входы — инверсные. Составим таблицу истинности RS триггера. Входы R и S в этой таблице будем использовать прямые, то есть и запись нуля, и запись единицы будут осуществляться единичными потенциалами (таблица 1).

Таблица 1. Таблица истинности RS триггера.

R S Q(t) Q(t+1) Пояснения
Режим хранения информации R=S=0
1 1
1 1 Режим установки единицы S=1
1 1 1
1 Режим записи нуля R=1
1 1
1 1 * R=S=1 запрещенная комбинация
1 1 1 *

RS триггер можно построить и на логических элементах "ИЛИ". Его схема приведена на рисунке 2. Принцип работы RS триггера, собранный на логических элементах "ИЛИ" будет точно таким же, как и рассмотренный ранее. Единственное отличие в работе этой схемы по сравнению с предыдущей схемой RS триггера будет заключаться в том, что сброс и установка триггера будет производиться единичными логическими уровнями. Эти особенности связаны с принципами работы инверсной логики, которые рассматривались ранее.


Рисунок 2. Схема простейшего RS триггера на логических элементах ИЛИ-НЕ. Входы R и S прямые (активный уровень ‘1’)

Так как RS триггер при реализации его на логических элементах "И" и "ИЛИ" работает одинаково (его принцип работы от схемы не зависит), то и условно-графическое изображение на принципиальных схемах тоже одинаково. Условно-графическое изображение RS триггера приведено на рисунке 3.


Рисунок 3. Условно-графическое обозначение RS триггера

Синхронный RS триггер

Схема RS триггера позволяет запоминать состояние логической схемы, но так как в начальный момент времени может возникать переходный процесс (в цифровых схемах этот процесс называется "опасные гонки"), то запоминать состояния логической схемы нужно только в определённые моменты времени, когда все переходные процессы закончены.

Это означает, что большинство цифровых схем требуют сигнала синхронизации (тактового сигнала). Все переходные процессы в комбинационной логической схеме должны закончиться за время периода синхросигнала, подаваемого на входы триггеров. Триггеры, запоминающие входные сигналы только в момент времени, определяемый сигналом синхронизации, называются синхронными. Для того чтобы отличать от них рассмотренные ранее варианты (RS триггер и триггер Шмитта) эти триггеры получили название асинхронных.

Формировать синхронизирующие сигналы с различной частотой и скважностью при помощи генераторов и одновибраторов мы уже научились в предыдущих главах. Теперь научимся записывать в триггеры входные логические сигналы только при наличии разрешающего сигнала.

Для этого нам потребуется схема, пропускающая входные сигналы только при наличии синхронизирующего сигнала. Такую схему мы уже использовали при построении схем мультиплексоров и демультиплексоров. Это логический элемент "2И". Триггеры, записывающие сигналы только при наличии синхронизирующего сигнала называются синхронными. Принципиальная схема синхронного RS-триггера приведена на рисунке 4.


Рисунок 4. Схема синхронного RS триггера, построенного на элементах "И-НЕ"

В таблице 2 приведена таблица истинности синхронного RS триггера. Принцип работы RS триггера не изменился, добавилось дополнительное условие: синхронизация момента срабатывания схемы. В этой таблице символ ‘x’ означает, что значения логических уровней на данном входе не важны. Они не влияют на работу триггера.

Таблица 2. Таблица истинности синхронного RS триггера.

С R S Q(t) Q(t+1) Пояснения
x x Режим хранения информации
x x 1 1
1 Режим хранения информации
1 1 1
1 1 1 Режим установки единицы S=1
1 1 1 1
1 1 Режим записи нуля R=1
1 1 1
1 1 1 * R=S=1 запрещенная комбинация
1 1 1 1 *

Как мы уже показали выше, RS триггеры могут быть реализованы на различных логических элементах. При этом их логика работы не изменяется. В то же самое время триггеры часто выпускаются в виде готовых микросхем (или реализуются внутри БИС в виде готовых модулей), поэтому на принципиальных схемах синхронные RS триггеры обычно изображаются в виде условно-графических обозначений. Условно-графическое обозначение синхронного RS триггера приведено на рисунке 5.


Рисунок 5. Условно-графическое обозначение синхронного RS триггера

Дата последнего обновления файла 21.12.2008

Вместе со статьей "RS-триггер" читают:

Читайте также:  Способ обивки двери дермантином

ТРИГГЕРЫ

Триггером называют устройство, имеющее два устойчивых состояния, способное под воздействием внешних сигналов переходить из одного состояния в другое. Свое состояние триггер может сохранять сколь угодно долго. Поэтому он может использоваться в качестве элемента памяти ёмкостью 1 бит.

Схему с двумя состояниями можно легко построить на основе усилителя с глубокой положительной обратной связью аналогично автогенератору. Автогенераторы гармонических колебаний имеют узкополосную функцию передачи в петле обратной связи. В результате условие баланса фаз и амплитуд выполняется только на одной частоте, на которой и возникают колебания. В триггерах используют петлю с широкой полосой, начинающуюся с нулевой частоты. Это легко получить, если использовать усилитель постоянного тока или логический элемент.

Триггеры строятся на основе двух инвертирующих усилителей. Обобщенная схема представлена на рис.1.

Усилители образуют регенеративное кольцо из двух инверторов, охваченных глубокой положительной обратной связью. Поэтому переход из одного состояния в другое происходит лавинообразно за очень короткое время.

Триггер имеет два выхода: прямой Q и инверсный . Состояние триггера определяют по значению сигнала на прямом выходе Q. Значения сигналов на прямом и инверсном выходах всегда противоположны.

Реальные логические элементы практически всегда обладают значительным усилением триггеры очень удобно строить на основе схем И-НЕ или ИЛИ-НЕ.

Асинхронные RS-триггеры. В асинхронных триггерах срабатывание происходит непосредственно в момент изменения сигнала на информационных входах. Асинхронные RS-триггеры являются наиболее простыми. В качестве самостоятельного устройства используются редко, но являются основой для построения более сложных систем.

RS-триггер — это триггер с раздельной установкой состояний логического нуля и логической единицы. Он имеет два информационных входа S и R.. По входу S триггер устанавливается в состояние Q=1 (=0), по входу R в состояние Q=0 (=1). В зависимости от логической структуры асинхронные RS-триггеры бывают с прямыми либо инверсными входами и могут строиться на двух логических элементах: 2ИЛИ-НЕ — триггер с прямыми входами; или на элементах 2И-НЕ — триггер с инверсными входами.

Асинхронный RS-триггер с прямыми входами на логических элементах 2ИЛИ-НЕ представлен на рисунке 2.

Логические элементы ИЛИ-НЕ с инвертированием сигнала образуют петлю положительной обратной связи. При таком соединении логическая единица на выходе одного логического элемента (ЛЭ) поступает на вход другого ЛЭ и обеспечивает логический ноль (инвертирование) на его выходе. Логический ноль на выходе ЛЭ, поступая на вход другого, при инвертировании дает логическую 1. Таким образом, выходы Q и всегда находятся в противоположных состояниях. Соединение элементов по данной схеме позволяет получить цепь с двумя устойчивыми состояниями.

Временные диаграммы, характеризующие работу асинхронного RS-триггера с прямыми входами, показаны на рис. 3.

Для элементов ИЛИ-НЕ активным является высокий уровень — логическая 1, поэтому в режиме хранения данных на входы этого триггера подаются нулевые значения R=S=0. Установка триггера в нужное состояние производится подачей на соответствующий вход активного уровня единицы. Одновременная подача единицы на оба входа (R и S) приводит к неопределенности. На обоих выходах Q ипоявляются единицы, а после отключения входов (S=R=0) может установиться любое состояние. Такая ситуация неопределенности не допустима, поэтому комбинация S=R=1 считается запрещенной.

Функционирования триггера с прямыми входами на элементах 2ИЛИ-НЕ может быть отражено таблицей истинности

Асинхронный RS-триггер с инверсными входами на логических элементах 2И-НЕ представлен на рисунке 4.

Для этих ЛЭ логическая 1 является пассивным уровнем, поэтому сигнал R = S = 1 не влияет на состояние триггера и обеспечивает хранение предыдущего значения на выходах Qn+1= Qп. Для элементов И-НЕ активным является низкий уровень, т.е. логический 0.

Временные диаграммы работы асинхронного RSтриггера на элементах И-НЕ показаны на рис.5

В таблице показано функционирование асинхронного RS-триггера в инверсными входами на элементах 2И-НЕ.

Таблица переходов RS-триггера на элементах 2И-НЕ

Знак «X» при ==0 означает, что такая комбинация является запрещенной.

Синхронный RS-триггер имеет дополнительный вход синхронизации, который также называют тактирующим входом. Синхронизирующий вход разрешает прием сигналов с информационных входов. При наличии синхросигнала происходит переключение триггера. При отсутствии сигнала на синхровходе информационные сигналы не влияют на состояние триггера.

Достоинство синхронных триггеров: они позволяют устранить влияние задержки распространения сигнала в различных частях схемы. Таким образом, достигается одновременный прием сигналов в заданные интервалы времени в разных точках схемы.

Синхронные триггеры бывают со статическим и динамическим управлением. При статическом управлении триггер реагирует на изменение информационных сигналов в течение всего времени действия синхросигналов. Поэтому изменение информационных сигналов в них возможно только при отсутствии сигнала на синхровходе.

В синхронных триггерах с динамическим управлением прием сигналов с информационных входов происходит в течение короткого фронта сигнала синхронизации. В остальное время информационные входы логически отключены и изменения сигналов на информационных входах не вызывают срабатываний синхронного триггера.

Логическая структура синхронного RS-триггера содержит асинхронный RS-триггер и дополнительную входную логическую схему, которая управляет его работой. На рис. 6 изображены схемы и обозначение синхронного RS-триггера с прямыми информационными и синхронизирующим входами. Такой триггер также называют RSТ-триггером, полагая вход С тактовым входом Т.

На входах кроме информационных сигналов R, S действует сигнал синхронизации С. Буквами Ra, Sa обозначены сигналы на входах асинхронного триггера. С помощью логических элементов DD1, DD2 обеспечивается передача входных сигналов на асинхронные триггеры. На рис. 7 изображены временные диаграммы работы синхронного RS-триггера с прямыми входами.

Таблица истинности синхронного RS-триггера

с прямыми входами (рис. 6, в)

При отсутствии синхронизирующего сигнала С=0 триггер не переключается независимо от входной информации R, S (прочерки в таблице). В этом режиме RST-триггер сохраняет ранее записанную в него информацию.

При С=1 триггер изменяет свое состояние в соответствии с поступившей на входы R и S информацией.

Триггеры могут дополнительно иметь установочные входы Ry, Sy,, сигналы которых непосредственно устанавливают триггер в заданное состояние независимо от синхросигналов (рис. 8).

Читайте также:  Сломалось крепление крышки унитаза

При использовании для построения синхронного RSтриггера однотипных логических элементов (И-НЕ либо ИЛИ-НЕ) его синхронные либо асинхронные входы управляются различными активными логическими уровнями. В случае элементов И-НЕ для синхронных входов активным является сигнал логической единицы, а для асинхронных входов активным является сигнал логического 0. Условное графическое обозначение RS-триггера с прямыми информационными и инверсными установочными входами показано на рис. 8, б.

Триггер в переводе с английского – защёлка. Это электронный модуль, способный длительно находиться в одном устойчивом состоянии и менять его под действием внешнего сигнала. Это цифровая автоматическая ячейка, которая умеет запоминать и хранить двоичный код данных, размером в 1 бит. То, как работает триггер, зависит от его структуры и назначения. В основе всякой подобной ячейки располагается восстанавливающее кольцо из пары инверторов. Устройство содержит прямой и инверсный выходы.

Место триггеров в цифровой схемотехнике

Сам рс триггер, как один из структурных элементов в схемотехнике, не содержит в своём составе какого-то отдельного блока или устройства памяти. Он является простейшей логической ячейкой, которая запоминает своё предыдущее и настоящее состояния на входах и выходах. Память является результатом алгоритма работы переключателя. Выходы устройства находятся в состоянии либо логического нуля, либо единицы. При их изменении схема «защёлкивает» это положение и запоминает до тех пор, пока устройство управления вводом, выполненное из логических элементов, не даст команду об изменении состояния.

Классификация

Прежде, чем рассматривать работу триггеров, необходимо разобраться в обозначениях входов и выходов подобных устройств.

Входа (порты) у триггера бывают:

  • R (reset) – устанавливает положение 0, раздельный порт;
  • S (set) – устанавливает положение 1, раздельный порт;
  • J – порт универсальных защёлок, устанавливает статус 1;
  • K – порт универсальных защёлок, устанавливает статус 0;
  • T – счётный порт, меняет положение защёлки.

Информация. Высокий уровень потенциала на входе или выходе равняется логической единице, низкий – логическому нулю. У микросхем марки ТТЛ логической единицей считается потенциал от 2,4…5В, логическим нулём – 0…0,4 В при напряжении питания 5 В. Для логических сборок других серий диапазоны потенциалов могут отличаться.

У защёлки в наличии два выходных порта:

При единице на прямом (Q = 0) «защёлка» находится в состоянии «1». В случае низкого потенциала на выходе (Q = 1) статус защёлки – «0».

У инверсного выхода все наоборот. При нуле у выхода Q¯ переключатель находится в состоянии единицы. Инверсия положения нужна для внедрения различных схематических решений.

Внимание! Типы портов определяют названия электронных переключателей, так, имея порта R и S, он носит имя RS-триггер.

Последовательностное логическое устройство (ПЛУ), которым является «защёлка», – это своеобразный блок для постройки различных комбинаций в схемах логических цепей. Бистабильное состояние RS-защёлки помогает компоновать такие логические схемы, как счётчики, регистры хранения, устройства памяти или регистры сдвига. Независимо от метода устройства логических связей, основные виды электронных переключателей можно разделить по способу ввода данных:

  • синхронный тип;
  • асинхронный тип;
  • комбинированный.

Всё зависит от того, как посылается команда управления на изменение состояния «защёлки».

Синхронные устройства

Для того чтобы rs триггер не менял своего положения от сочетания задержанных командных импульсов на его портах, применяют синхронизирующую команду. Это тактовый импульс, который подаётся на синхронизирующий порт. Сменившиеся сигналы на входах такой «защёлки» не смогут изменить состояния на выходе, пока не придёт тактовый (синхронизирующий) импульс. Эти импульсы вырабатывают тактовые генераторы. Длина тактовых сигналов намного меньше их периода. Импульсы определяют частоту замены информации, привязав её к дискретным временным периодам – tl, t2,…,tn-1,tn, tn+l. Это позволяет синхронизировать процессы работы отдельных узлов оборудования в едином ритме.

Действие схемы следующее:

  • если на порту С присутствует ноль, статус триггера не меняется, поскольку информация с портов S и R не передаётся на защёлку;
  • если на порту С появляется логическая единица, то переключатель принимает команды с S и R входов и меняет своё положение.

У таких схем повышенная помехоустойчивость, что выгодно отличает их от асинхронных устройств, последние могут перевернуться не только от сигнала, но и от помехи. Синхронная структура применяется в технике, связанной с преобразованием или обработкой цифровых данных.

Важно! При применении RS-защёлки с инверсными входами необходимо заменить элементы схемы «И» на элементы «И – НЕ».

Асинхронные модели

Устройство, меняющее своё состояние немедленно при изменении команды на логических портах, называют асинхронным триггером. Он имеет в своём составе только порты: R (сброс) и S (установка). Ограничения для пользования подобными схемами связано с соперничеством между сигналами, которые при попадании на разные входы RS-триггера движутся разными путями, как бы состязаясь между собой. При этом возникают временные задержки и сдвиги, вызванные разными причинами: изменения температуры, долгий срок службы и прочее. Такая «гонка» вызывает частые ошибочные переворачивания ячейки.

Тактовая синхронизация в данном случае не эффективна, потому асинхронные ячейки применяются в качестве асинхронных счётчиков, различных ключей, делителей частоты и им подобных схемных решений.

Комбинированные схемы

Модуль, состоящий из комбинации нескольких ячеек, называется комбинированным триггером. Возможны комбинации от двух и более функциональных ячеек.

Таблица комбинаций двух типов ячеек памяти

Тип устройства RS R S E JK T D DV
RS Х Х Х Х Х Х Х
R Х Х Х Х Х Х
S Х Х Х Х Х
E Х Х Х Х
JK Х Х Х
T Х Х
D Х
DV

Типы триггеровЗдесь Х – объединение двух типов возможно.

Подразделение этих устройств по типам можно рассмотреть по таблицам переходов состояния.

Выделяются следующие типы ячеек памяти состояния:

  • rs-защёлка – асинхронная и синхронная;
  • jk-защёлка;
  • d-защёлка;
  • t-защёлка.

Последний элемент списка – устройство составное, выполняется из синхронной rs-ячейки памяти.

RS-триггеры

Рассматривают два вида подобных ячеек: асинхронная и синхронная защёлка. При подробном изучении видна значительная разница в работе и сфере применения.

Читайте также:  Сделать мебель в стиле прованс своими руками

RS-триггер асинхронный

Самый простой вид защёлки, редко применяется как самостоятельное устройство, является ячейкой для построения более сложных блоков. Построены асинхронные соты на элементах:

  • 2 ИЛИ – НЕ, триггерная сота с прямыми портами;
  • 2 И-НЕ, триггерная сота с инверсными портами.

Фиксированные положения триггеру обеспечивают обратные связи. Это подключение выхода одного к любому входному порту другого логического элемента.

RS-триггер синхронный

Основа регистров, делителей частоты и различных счётчиков – триггерная сота памяти. В подобных устройствах зафиксированную раньше информацию нужно передать на выход и записать в следующую ячейку по сигналу тактового импульса. Импульс подаётся на С-порт (статический или динамический).

К сведению. Статический С-вход выполняет синхронизацию по изменению уровня потенциала сигнала, динамический С-вход синхронизирует изменение состояния не по уровню, а моменту его изменения. Переключение на динамическом С-входе может осуществляться по фронту импульса (прямой) или по его срезу (инверсный).

Состоящие из пары синхронных rs-триггеров и инвертора двухступенчатые RS-триггеры управляются полным (задействованы и фронт, и срез) динамическим тактовым импульсом. Такие ячейки памяти называются master-slave (мастер-помощник).

JK-триггер

Отличительной чертой этого типа «защёлки» является отсутствие запрещённого сочетания сигналов на портах. При J = K = 1 положение защёлки переворачивается на обратное, по сравнению к текущим Q0.

JK-переключатель отличается от RS-ячейки памяти только одним: если на J и K подаётся «1», то он меняет своё пребывание на противоположное положение. Происходит инверсия, причём у этой ячейки памяти отсутствуют запрещённые состояния главных портов.

Внимание! Если провести аналогию обозначения входов, то J и K, соответственно, аналогичны входам S и R у RS-триггера. Практическое применение нашли только синхронные jk-триггеры с динамической синхронизацией.

Что такое RS триггер

Это сота памяти, способная находиться в одном из стабильных положений: «0» или «1». Переворачиваться, т.е. менять их, она может под воздействием тактовых сигнальных импульсов. Ни записать, ни стереть хранимый бит элементарный элемент, собранный на двух инверторах, не может. Принцип работы rs триггеров, выполненных на двух компонентах 2И-НЕ, позволяет это сделать.

Таблица истинности

Таблица переходов состояний (таблица истинности) поясняет работу RS-триггера на элементах «И-НЕ». На ней Q 0 – текущий статус ячейки до попадания активного сигнала на порт. Когда логическая единица отсутствует на входах R и S, «защёлка» сохраняет положение Q 0. Активный импульс R = 1 перекидывает защёлку в положение 0, импульс S = 1 – в положение 1. Звездочка в таблице указывает на положение при запрещенном сочетании приходящих сигналов.

Такой тип имеет раздельное назначение логических состояний нуля и единицы по информационным портам.

Временные диаграммы

Кроме таблиц истинности, помогает разобраться в работе ячейки битовой памяти временная диаграмма. При этом на графике при изучении импульсов рассматривают следующие параметры:

  • длительность импульса – временной интервал от фронта до спада;
  • период – интервал от фронта предыдущего импульса до фронта последующего;
  • скважность – отношение периода импульса к его длительности.

Диаграмма графически отображает сигнальные импульсы на входах и выходах в одних и тех же временных точках.

Классификация последовательных схем

Последовательные схемы допускается классифицировать по следующим показателям:

  • одноступенчатые защёлки, в которых содержатся элемент памяти и устройство управления, их маркируют буквой Т;
  • двухступенчатые ячейки: статического и динамического управления, используются для защиты от гонок сигналов, обозначаются буквами ТТ;
  • переключатели, имеющие сложную логику: одно,- и двухступенчатые соты.

Одноступенчатые ячейки применяются в качестве первых ступеней в переключателях ТТ с динамической схемой управления, имеют такое же управление. При самостоятельном использовании управление в большинстве своём статическое.

Двухступенчатые устройства имеют как статическое, так и динамическое управление.

Состояние «Установлен»

RS-переключатель в этом состоянии имеет установленную цепь с Q, равным нулю, и Q¯, равным единице, и независим от управляемого сигнала. При этом на R присутствует ноль, на S – логическая единица.

Состояние «Сброшен»

Это тоже неизменная ситуация. Для её организации необходимо выставить исходные условия. На R подаётся «1», на S – «0». При этом выход Q должен иметь «1», Q¯ – значение «0». Обратные связи обеспечивают и фиксируют независимое от последующих значений на входах значение.

Диаграмма переключения RS-триггера

Состояния переключения, установки и сброса можно просмотреть на временной диаграмме. На ней отмечено, что переключатель переходит в положение установки при появлении нуля на его S-входе и единице на входе R, фиксированный сброс при подаче нуля на порт R и единицы на S.

Внимание! Если ноль подать на два входа (R и S) синхронно, то переключатель из-за неопределённого состояния на вводах может перевернуться в любое непредсказуемое положение, при этом произойдёт повреждение данных.

Модификация схемы триггера

Чтобы смена состояний происходила на подъёме уровня сигнала у rs-триггера, необходимо на его выходах иметь:

  • при установке – Q = 1, а Q¯ = 0;
  • при сбросе – Q = 0, а Q¯ = 1.

Чтобы это организовать, поступающие сигналы защёлки инвертируют. В результате этого изменение состояния выполняется при поступлении положительных сигналов. При модификации добавляются в качестве инверторов 2 элемента И-НЕ.

Как синхронизировать работу триггера

Подключение двухпортового элемента «И» в последовательную цепь схемы триггера с каждым из входов позволит менять его статус, независимо от состояний на R,- или S-входах. Новый порт С получится при объединении двух портов ячеек «И». В результате доработки статус на выходах Q и Q¯ будет меняться только тогда, когда на С будет приходить высокий потенциал. Предусмотрено подключение генераторов тактовых импульсов на этот новый вход.

Регистры на триггерах

Так как один переключатель является однобитовой ячейкой памяти, то, чтобы сохранить несколько бит, нужно увеличить количество единичных хранилищ. Цепочка из таких ячеек носит названия регистра. Регистр позволяет временно хранить цифровые данные двоичных разрядов. Количество разрядов зависит от количества однобитовых ячеек.

Использование элементарных электронных цифровых устройств – триггеров, позволяет составлять сложные схемы управления логическими устройствами. Одна элементарная защёлка памяти своим бистабильным состоянием помогает осуществлять самые сложные схемные решения.

Видео

Понравилась статья? Поделиться с друзьями:
ТурбоЗайм
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.

Adblock detector