Таблице истинности вида соответствует логическая схема

Содержание

Логические схемы создаются для реализации в цифровых устройствах булевых функций (функций алгебры логики).

В цифровой схемотехнике цифровой сигнал — это сигнал, который может принимать два значения, рассматриваемые как логическая "1" и логический "0".

Логические схемы могут содержать до 100 миллионов входов и такие гигантские схемы существуют. Представьте себе, что булева функция (уравнение) такой схемы была потеряна. Как восстановить её с наименьшими потерями времени и без ошибок? Наиболее продуктивный способ — разбить схему на ярусы. При таком способе записывается выходная функция каждого элемента в предыдущем ярусе и подставляется на соответствующий вход на следующем ярусе. Этот способ анализа логических схем со всеми нюансами мы сегодня и рассмотрим.

Логические схемы реализуются на логических элементах: "НЕ", "И", "ИЛИ", "И-НЕ", "ИЛИ-НЕ", "Исключающее ИЛИ" и "Эквивалентность". Первые три логических элемента позволяют реализовать любую, сколь угодно сложную логическую функцию в булевом базисе. Мы будем решать задачи на логические схемы, реализованные именно в булевом базисе.

Для обозначения логических элементов используется несколько стандартов. Наиболее распространёнными являются американский (ANSI), европейский (DIN), международный (IEC) и российский (ГОСТ). На рисунке ниже приведены обозначения логических элементов в этих стандартах (для увеличения можно нажать на рисунок левой кнопкой мыши).

На этом уроке будем решать задачи на логические схемы, на которых логические элементы обозначены в стандарте ГОСТ.

Задачи на логические схемы бывают двух видов: задача синтеза логических схемы и задачи анализа логических схем. Мы начнём с задачи второго типа, так как в таком порядке удаётся быстрее научиться читать логические схемы.

Чаще всего в связи с построением логических схем рассматриваются функции алгебры логики:

  • трёх переменных (будут рассмотрены в задачах анализа и в одной задаче синтеза);
  • четырёх переменных (в задачах синтеза, то есть в двух последних параграфах).

Рассмотрим построение (синтез) логических схем

  • в булевом базисе "И", "ИЛИ", "НЕ" (в предпоследнем параграфе);
  • в также распространённых базисах "И-НЕ" и "ИЛИ-НЕ" (в последнем параграфе).

Задача анализа логических схем

Задача анализа заключается в определении функции f , реализуемой заданной логической схемой. При решении такой задачи удобно придерживаться следующей последовательности действий.

  1. Логическая схема разбивается на ярусы. Ярусам присваиваются последовательные номера.
  2. Выводы каждого логического элемента обозначаются названием искомой функции, снабжённым цифровым индексом, где первая цифра — номер яруса, а остальные цифры — порядковый номер элемента в ярусе.
  3. Для каждого элемента записывается аналитическое выражение, связывающее его выходную функцию с входными переменными. Выражение определяется логической функцией, реализуемой данным логическим элементом.
  4. Производится подстановка одних выходных функций через другие, пока не получится булева функция, выраженная через входные переменные.

Пример 1. Найдите булеву функцию логической схемы и составьте таблицу истинности для логической схемы.

Решение. Разбиваем логическую схему на ярусы, что уже показано на рисунке. Запишем все функции, начиная с 1-го яруса:

Теперь запишем все функции, подставляя входные переменные x, y, z :

В итоге получим функцию, которую реализует на выходе логическая схема:

.

Таблица истинности для данной логической схемы:

x y z f
1 1 1 1 1 1 1
1 1 1
1 1 1
1 1
1 1 1
1 1
1 1
1 1

Найти булеву функцию логической схемы самостоятельно, а затем посмотреть решение

Пример 2. Найдите булеву функцию логической схемы и составьте таблицу истинности для логической схемы.

Пример 3. Найдите булеву функцию логической схемы и составьте таблицу истинности для логической схемы.

Продолжаем искать булеву функцию логической схемы вместе

Пример 4. Найдите булеву функцию логической схемы и составьте таблицу истинности для логической схемы.

Решение. Разбиваем логическую схему на ярусы. Запишем все функции, начиная с 1-го яруса:

Теперь запишем все функции, подставляя входные переменные x, y, z :

В итоге получим функцию, которую реализует на выходе логическая схема:

.

Таблица истинности для данной логической схемы:

x y z f
1 1 1 1 1
1 1 1 1
1 1 1 1
1
1 1 1 1
1 1 1
1 1 1
1 1

Пример 5. Найдите булеву функцию логической схемы и составьте таблицу истинности для логической схемы.

Решение. Разбиваем логическую схему на ярусы. Структура данной логической схемы, в отличие от предыдущих примеров, имеет 5 ярусов, а не 4. Но одна входная переменная — самая нижняя — пробегает все ярусы и напрямую входит в логический элемент в первом ярусе. Запишем все функции, начиная с 1-го яруса:

Читайте также:  Способы очистки воды в бассейне

Теперь запишем все функции, подставляя входные переменные x, y, z :

В итоге получим функцию, которую реализует на выходе логическая схема:

.

Таблица истинности для данной логической схемы:

x y z f
1 1 1 1 1 1
1 1 1 1 1
1 1 1 1
1 1 1
1 1 1 1 1
1 1 1 1
1 1 1
1 1

Задача синтеза логических схем в булевом базисе

Разработка логической схемы по её аналитическому описанию имеет название задачи синтеза логической схемы.

Каждой дизъюнкции (логической сумме) соответствует элемент "ИЛИ", число входов которого определяется количеством переменных в дизъюнкции. Каждой конъюнкции (логическому произведению) соответствует элемент "И", число входов которого определяется количеством переменных в конъюнкции. Каждому отрицанию (инверсии) соответствует элемент "НЕ".

Часто разработка логической схемы начинается с определения логической функции, которую должна реализовать логическая схемы. В этом случае дана только таблица истинности логической схемы. Мы разберём именно такой пример, то есть, решим задачу, полностью обратную рассмотренной выше задаче анализа логических схем.

Пример 6. Построить логическую схему, реализующую функцию с данной таблицей истинности:

x y f
1 1
1
1 1

Решение. Разбираем таблицу истинности для логической схемы. Определяем функцию, которая получится на выходе схемы и промежуточные функции, которые на входе принимают аргументы x и y . В первой строке результатом реализации выходной функции при том, что значения входных переменных равны единицам, должен быть логический "0", во второй строке — при разных значениях входных переменных на выходе тоже должен быть логический "0". Поэтому нужно, чтобы выходная функция была конъюнкцией (логическим произведением).

Теперь подбираем промежуточные функции. Получаем следующую таблицу для промежуточных функций и выходной функции — конъюнкции промежуточных функций:

1
1 1 1
1

Для построения логической схемы необходимо элементы, реализующие логические операции, указанные в выходной функции, располагать в порядке, заданной этой функцией. Из выражения видно, что понадобятся 3 схемы "НЕ", две двухвходовых схемы "И" и одна двухвходовая схема "ИЛИ". В соответствии с выходной функцией получаем следующую логическую схему:

А теперь очередь дошла до функций алгебры логики четырёх переменных. Сначала выполним синтез логической схемы в булевом базисе.

Пример 7. Построить в булевом базисе логическую схему, реализующую функцию алгебры логики

Решение. Для построения логической схемы потребуются 4 схемы "НЕ", одна трёхвходовая схема "И", 2 двухвходовые схемы "И" и одна трёхвходовая схема "ИЛИ". В соответствии с этим получаем следующую логическую схему:

Задача синтеза логических схем в базисах "И-НЕ" и "ИЛИ-НЕ"

Часто для сокращения числа микросхем используют элементы "И-НЕ" или/и "ИЛИ-НЕ". Рассмтрим примеры, как построить схему, реализующую ту же функцию, что в предыдущем примере, но, сначала в базисе "И-НЕ", а затем в базисе "ИЛИ-НЕ".

Пример 8. Построить в базисе "И-НЕ" логическую схему, реализующую функцию алгебры логики .

Решение. Логическая функция должна быть приведена к виду, содержащему только операции логического умножения (конъюнкции) и инвертирования (отрицания). Это делается при помощи двойного инвертирования исходного выражения функции и применения закона де Моргана:

Для построения логической схемы потребуются 8 схем "И-НЕ". Получаем следующую логическую схему:

Пример 9. Построить в базисе "ИЛИ-НЕ" логическую схему, реализующую функцию алгебры логики .

Онлайн калькулятор позволяет быстро строить таблицу истинности для произвольной булевой функции или её вектора, рассчитывать совершенную дизъюнктивную и совершенную конъюнктивную нормальные формы, находить представление функции в виде полинома Жегалкина, строить карту Карно и классифицировать функцию по классам Поста.

Калькулятор таблицы истинности, СКНФ, СДНФ, полинома Жегалкина

введите функцию или её вектор

Построено таблиц, форм: 9012

Как пользоваться калькулятором

  1. Введите в поле логическую функцию (например, x1 ∨ x2) или её вектор (например, 10110101)
  2. Укажите действия, которые необходимо выполнить с помощью переключателей
  3. Укажите, требуется ли вывод решения переключателем "С решением"
  4. Нажмите на кнопку "Построить"

Видеоинструкция к калькулятору

Используемые символы

В качестве переменных используются буквы латинского и русского алфавитов (большие и маленькие), а также цифры, написанные после буквы (индекс переменной). Таким образом, именами переменных будут: a , x , a1 , B , X , X1 , Y1 , A123 и так далее.

Для записи логических операций можно использовать как обычные символы клавиатуры ( * , + , ! , ^ , -> , = ), так и символы, устоявшиеся в литературе ( ∧ , ∨ , ¬ , ⊕ , → , ≡ ). Если на вашей клавиатуре отсутствует нужный символ операции, то используйте клавиатуру калькулятора (если она не видна, нажмите "Показать клавиатуру"), в которой доступны как все логические операции, так и набор наиболее часто используемых переменных.

Для смены порядка выполнения операций используются круглые скобки ().

Обозначения логических операций

  • И (AND): & • ∧ *
  • ИЛИ (OR): ∨ +
  • НЕ (NOT): ¬ !
  • Исключающее ИЛИ (XOR): ⊕ ^
  • Импликация: -> → =>
  • Эквивалентность: =

Что умеет калькулятор

  • Строить таблицу истинности по функции
  • Строить таблицу истинности по двоичному вектору
  • Строить совершенную конъюнктивную нормальную форму (СКНФ)
  • Строить совершенную дизъюнктивную нормальную форму (СДНФ)
  • Строить полином Жегалкина (методами Паскаля, треугольника, неопределённых коэффициентов)
  • Определять принадлежность функции к каждому из пяти классов Поста
  • Строить карту Карно
  • Минимизировать ДНФ и КНФ
  • Искать фиктивные переменные

Что такое булева функция

Булева функция f(x1, x2, . xn) — это любая функция от n переменных x1, x2, . xn, в которой её аргументы принимают одно из двух значений: либо 0, либо 1, и сама функция принимает значения 0 или 1. То есть это правило, по которому произвольному набору нулей и единиц ставится в соответствие значение 0 или 1. Подробнее про булевы функции можно посмотреть на Википедии.

Читайте также:  Театральная миниатюра на день матери

Что такое таблица истинности?

Таблица истинности — это таблица, описывающая логическую функцию, а именно отражающую все значения функции при всех возможных значениях её аргументов. Таблица состоит из n+1 столбцов и 2 n строк, где n — число используемых переменных. В первых n столбцах записываются всевозможные значения аргументов (переменных) функции, а в n+1-ом столбце записываются значения функции, которые она принимает на данном наборе аргументов.

Довольно часто встречается вариант таблицы, в которой число столбцов равно n + число используемых логических операций. В такой таблице также первые n столбцов заполнены наборами аргументов, а оставшиеся столбцы заполняются значениями подфункций, входящих в запись функции, что позволяет упростить расчёт конечного значения функции за счёт уже промежуточных вычислений.

Логические операции

Логическая операция — операция над высказываниями, позволяющая составлять новые высказывания путём соединения более простых. В качестве основных операций обычно называют конъюнкцию (∧ или &), дизъюнкцию (∨ или |), импликацию (→), отрицание (¬), эквивалентность (=), исключающее ИЛИ (⊕).

Таблица истинности логических операций

a b a ∧ b a ∨ b ¬a ¬b a → b a = b a ⊕ b
1 1 1 1
1 1 1 1 1
1 1 1 1
1 1 1 1 1 1

Как задать логическую функцию

Есть множество способов задать булеву функцию:

  • таблица истинности
  • характеристические множества
  • вектор значений
  • матрица Грея
  • формулы

Рассмотрим некоторые из них:

Чтобы задать функцию через вектор значений необходимо записать вектор из 2 n нулей и единиц, где n — число аргументов, от которых зависит функция. Например, функцию двух аргументов можно задать так: 0001 (операция И), 0111 (операция ИЛИ).

Чтобы задать функцию в виде формулы, необходимо записать математическое выражение, состоящее из аргументов функции и логических операций. Например, можно задать такую функцию: a∧b ∨ b∧c ∨ a∧c

Способы представления булевой функции

С помощью формул можно получать огромное количество разнообразных функций, причём с помощью разных формул можно получить одну и ту же функцию. Иногда бывает весьма полезно узнать, как построить ту или иную функцию, используя лишь небольшой набор заданных операций или используя как можно меньше произвольных операций. Рассмотрим основные способы задания булевых функций:

  • Совершенная дизъюнктивная нормальная форма (СДНФ)
  • Совершенная конъюнктивная нормальная форма (СКНФ)
  • Алгебраическая нормальная форма (АНФ, полином Жегалкина)

Совершенная дизъюнктивная нормальная форма (ДНФ)

Простая конъюнкция — это конъюнкция некоторого конечного набора переменных, или их отрицаний, причём каждая переменная встречается не более одного раза.
Дизъюнктивная нормальная форма (ДНФ) — это дизъюнкция простых конъюнкций.
Совершенная дизъюнктивная нормальная форма (СДНФ) — ДНФ относительно некоторого заданного конечного набора переменных, в каждую конъюнкцию которой входят все переменные данного набора.

Например, ДНФ является функция ¬a bc ∨ ¬a ¬b c ∨ ac, но не является СДНФ, так как в последней конъюнкции отсутствует переменная b.

Совершенная конъюнктивная нормальная форма (КНФ)

Простая дизъюнкция — это дизъюнкция одной или нескольких переменных, или их отрицаний, причём каждая переменная входит в неё не более одного раза.
Конъюнктивная нормальная форма (КНФ) — это конъюнкция простых дизъюнкций.
Совершенная конъюнктивная нормальная форма (СКНФ) — КНФ относительно некоторого заданного конечного набора переменных, в каждую дизъюнкцию которой входят все переменные данного набора.

Например, КНФ является функция (a ∨ b) ∧ (a ∨ b ∨ c), но не является СДНФ, так как в первой дизъюнкции отсутствует переменная с.

Алгебраическая нормальная форма (АНФ, полином Жегалкина)

Алгебраическая нормальная форма, полином Жегалкина — это форма представления логической функции в виде полинома с коэффициентами вида 0 и 1, в котором в качестве произведения используется операция конъюнкции, а в качестве сложения — исключающее ИЛИ.

Примеры полиномов Жегалкина: 1, a, a⊕b, ab⊕a⊕b⊕1

Алгоритм построения СДНФ для булевой функции

  1. Построить таблицу истинности для функции
  2. Найти все наборы аргументов, на которых функция принимает значение 1
  3. Выписать простые конъюнкции для каждого из наборов по следующему правилу: если в наборе переменная принимает значение 0, то она входит в конъюнкцию с отрицанием, а иначе без отрицания
  4. Объединить все простые конъюнкции с помощью дизъюнкции

Алгоритм построения СКНФ для булевой функции

  1. Построить таблицу истинности для функции
  2. Найти все наборы аргументов, на которых функция принимает значение 0
  3. Выписать простые дизъюнкции для каждого из наборов по следующему правилу: если в наборе переменная принимает значение 1, то она входит в дизъюнкцию с отрицанием, а иначе без отрицания
  4. Объединить все простые дизъюнкции с помощью конъюнкции

Алгоритм построения полинома Жегалкина булевой функции

Есть несколько методов построения полинома Жегалкина, в данной статье рассмотрим наиболее удобный и простой из всех.

  1. Построить таблицу истинности для функции
  2. Добавить новый столбец к таблице истинности и записать в 1, 3, 5. ячейки значения из тех же строк предыдущего столбца таблицы истинности, а к значениям в строках 2, 4, 6. прибавить по модулю два значения из соответственно 1, 3, 5. строк.
  3. Добавить новый столбец к таблице истинности и переписать в новый столбец значения 1, 2, 5, 6, 9, 10. строк, а к 3, 4, 7, 8, 11, 12. строкам аналогично предыдущему пункту прибавить переписанные значения.
  4. Повторить действия каждый раз увеличивая в два раза количество переносимых и складываемых элементов до тех пор, пока длина не станет равна числу строк таблицы.
  5. Выписать булевы наборы, на которых значение последнего столбца равно единице
  6. Записать вместо единиц в наборах имена переменных, соответствующие набору (для нулевого набора записать единицу) и объединить их с помощью операции исключающего ИЛИ.
Читайте также:  Сауна хамам польза и вред

Примеры построения различных представлений логических функций

Построим совершенные дизъюнктивную и дизъюнктивную нормальные формы, а также полином Жегалкина для функции трёх переменных F = ¬a b∨ ¬b c∨ca

1. Построим таблицу истинности для функции

a b c ¬a ¬a ∧b ¬b ¬b ∧c ¬a ∧b∨ ¬b ∧c c∧a ¬a ∧b∨ ¬b ∧c∨c∧a
1 1
1 1 1 1 1 1
1 1 1 1 1
1 1 1 1 1 1
1 1
1 1 1 1 1 1 1
1 1
1 1 1 1 1

Построение совершенной дизъюнктивной нормальной формы:

Найдём наборы, на которых функция принимает истинное значение: < 0, 0, 1 > < 0, 1, 0 > < 0, 1, 1 > < 1, 0, 1 >

В соответствие найденным наборам поставим элементарные конъюнкции по всем переменным, причём если переменная в наборе принимает значение 0, то она будет записана с отрицанием:

Объединим конъюнкции с помощью дизъюнкции и получим совершенную дизъюнктивную нормальную форму:

Построение совершенной конъюнктивной нормальной формы:

Найдём наборы, на которых функция принимает ложное значение: < 0, 0, 0 > < 1, 0, 0 >

В соответствие найденным наборам поставим элементарные дизъюнкции по всем переменным, причём если переменная в наборе принимает значение 1, то она будет записана с отрицанием:

Объединим дизъюнкции с помощью конъюнкции и получим совершенную конъюнктивную нормальную форму:

Построение полинома Жегалкина:

Добавим новый столбец к таблице истинности и запишем в 1, 3, 5 и 7 строки значения из тех же строк предыдущего столбца таблицы истинности, а значения в строках 2, 4, 6 и 8 сложим по модулю два со значениями из соответственно 1, 3, 5 и 7 строк:

a b c F 1
1 1 ⊕ 0 1
1 1 1
1 1 1 ⊕ 1
1
1 1 1 ⊕ 0 1
1 1
1 1 1 1 ⊕ 0 1

Добавим новый столбец к таблице истинности и запишем в 1 и 2, 5 и 6 строки значения из тех же строк предыдущего столбца таблицы истинности, а значения в строках 3 и 4, 7 и 8 сложим по модулю два со значениями из соответственно 1 и 2, 5 и 6 строк:

a b c F 1 2
1 1 1 1
1 1 1 ⊕ 0 1
1 1 1 ⊕ 1 1
1
1 1 1 1 1
1 1 ⊕ 0
1 1 1 1 1 ⊕ 1

Добавим новый столбец к таблице истинности и запишем в 1 2, 3 и 4 строки значения из тех же строк предыдущего столбца таблицы истинности, а значения в строках 5, 6, 7 и 8 сложим по модулю два со значениями из соответственно 1, 2, 3 и 4 строк:

a b c F 1 2 3
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 ⊕ 0
1 1 1 1 1 ⊕ 1
1 1 ⊕ 1 1
1 1 1 1 1 ⊕ 1 1

Окончательно получим такую таблицу:

a b c F 1 2 3
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1
1 1 1 1 1
1 1 1
1 1 1 1 1 1

Выпишем наборы, на которых получившийся вектор принимает единичное значение и запишем вместо единиц в наборах имена переменных, соответствующие набору (для нулевого набора следует записать единицу):

Объединяя полученные конъюнкции с помощью операции исключающего или, получим полином Жегалкина: c⊕b⊕bc⊕ab⊕abc

А Вы знаете, что мы пишем программы на C, C++, C#, Pascal и Python?

Так что если Вам нужно написать программу на C/C++, C#, Pascal или Python — мы с радостью поможем с этим!

В том числе мы занимаемся репетиторством по информатике и программированию, а также готовим к ОГЭ и ЕГЭ!

Почему именно мы?

  • Более 1800 выполненных заказов;
  • Более 170 отзывов;
  • Качественное решение
  • Короткие сроки и привлекательные цены
  • Различные акции и скидки

Как с нами связаться?

  • группа Вконтакте: vk.com/programforyou
  • наша почта: order@programforyou.ru

Programforyou — позвольте нам писать код для вас и вы получите качественное решение в короткие сроки по привлекательной цене!

Логические выражения и таблица истинности

Таблица истинности — таблица, показывающая, какие значения принимает составное высказывание при всех сочетаниях (наборах) значений входящих в него простых высказываний.

Логическое выражение — составные высказывания в виде формулы.

Равносильные логические выражения – логические выражения, у которых последние столбцы таблиц истинности совпадают. Для обозначения равносильности используется знак «=».

Алгоритм построения таблицы истинности:

1. подсчитать количество переменных n в логическом выражении;

2. определить число строк в таблице по формуле m=2 n , где n — количество переменных;

3. подсчитать количество логических операций в формуле;

4. установить последовательность выполнения логических операций с учетом скобок и приоритетов;

5. определить количество столбцов: число переменных + число операций;

6. выписать наборы входных переменных;

7. провести заполнение таблицы истинности по столбцам, выполняя логические операции в соответствии с установленной в пункте 4 последовательностью.

Заполнение таблицы:

1. разделить колонку значений первой переменной пополам и заполнить верхнюю часть «0», а нижнюю «1»;

2. разделить колонку значений второй переменной на четыре части и заполнить каждую четверть чередующимися группами «0» и «1», начиная с группы «0»;

3. продолжать деление колонок значений последующих переменных на 8, 16 и т.д. частей и заполнение их группами «0» или «1» до тех пор, пока группы «0» и «1» не будут состоять из одного символа.

Пример 1. Для формулы A/ (B / ¬B /¬C) постройте таблицу истинности.

Количество логических переменных 3, следовательно, количество строк — 2 3 = 8.

Количество логических операций в формуле 5, количество логических переменных 3, следовательно количество столбцов — 3 + 5 = 8.

Пример 2. Определите истинность логического выражения F(А, В) = (А/ В)/(¬А/¬В) .

1. В выражении две переменные А и В (n=2).

2. mстрок=2 n , m=2 2 =4 строки.

3. В формуле 5 логических операций.

4. Расставляем порядок действий

1) А/ В; 2) ¬А; 3) ¬В; 4) ¬А/¬В; 5) (А/ В)/(¬А/¬В).

5. Кстолбцов=n+5=2+5=7 столбцов.

Понравилась статья? Поделиться с друзьями:
ТурбоЗайм
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.

Adblock detector