Танталовый конденсатор где применяется

Содержание

Наверное, у каждого радиолюбителя хоть раз да взрывался танталовый конденсатор из-за неправильной переплюсовки.

В этой статье я расскажу, что такое танталовый конденсатор, зачем он нужен и как вообще с ним работать.

Если после прочтения у вас останутся вопросы – смело задавайте их в комментариях, а я постараюсь ответить.

Содержание статьи

Твердотельные танталовые конденсаторы по большинству параметров соответствуют требованиям к современным электронным устройствам. Они отличаются малыми габаритами, высокой удельной емкостью, надежностью (при соблюдении правил на всех этапах их жизни) и совместимостью с общепринятыми технологиями монтажа. Преимуществом является и то, что важный параметр конденсатора – ESR (эквивалентное последовательное сопротивление) – с ростом частоты не возрастает, а в некоторых случаях даже уменьшается. Чтобы сократить число отказов и продлить рабочий период устройства, необходимо учитывать его индивидуальные особенности при изготовлении, хранении, монтаже и во время работы.

Так выглядят танталовые конденсаторы

Почему тантал используют для производства конденсаторов

Тантал способен при окислении формировать плотную оксидную пленку, толщину которой можно регулировать с помощью технологических приемов, тем самым изменяя параметры конденсатора.

Помимо тантала конденсаторы делают из керамики, слюды, бумаги и алюминиевой фольги.

Описание и назначение танталовых конденсаторов

Современные танталовые конденсаторы имеют малые размеры и относятся к чип-компонентам, которые предназначены для монтажа на плате. Иначе такие детали называются SMD, что расшифровывается как «компоненты поверхностного монтажа». SMD детали удобны для автоматизированных процессов монтажа и пайки на печатные платы.

Основное назначение электролитических поляризованных танталовых конденсаторов – действовать в комплексе с резистором с целью обработки сигнала и сглаживания его пиков и острых импульсов.

Конденсаторы широко используются в автомобильной, промышленной, цифровой, аэрокосмической технике.

Устройство танталовых твердотельных конденсаторов

Танталовый конденсатор относится к электролитическому типу. В его состав входят 4 основные части: анод, диэлектрик, твердый электролит, катод. Изготовление танталового конденсатора состоит из ряда достаточно сложных технологических операций.

Изготовление анода

Пористую гранулированную структуру получают прессованием из высокоочищенного танталового порошка. В процессе спекания в условиях глубокого вакуума при температурах +1300…+2000°C из порошка образуется губчатая структура с развитой площадью поверхности. Благодаря ей, обеспечивается высокая емкость при небольшом объеме. Танталовый конденсатор при одинаковой с алюминиевым устройством емкости имеет гораздо меньший объем.

Формирование диэлектрического слоя

Диэлектрический оксидный слой выращивают на поверхности анода из пентаоксида тантала в процессе электрохимического окисления. Толщину оксида можно регулировать изменением напряжения. Обычно толщина диэлектрической пленки составляет доли микрометра. Оксидный слой имеет не кристаллическую, а аморфную структуру, которая обладает значительным электросопротивлением.

Получение электролита

Электролитом служит твердотельный полупроводник – диоксид марганца, – который получают термообработкой солей марганца в ходе окислительно-восстановительного процесса. Для этого анодный губчатый слой покрывают солями марганца, а затем нагревают их до получения диоксида марганца. Процесс повторяют несколько раз до полного покрытия анода.

Формирование катодного слоя

Для улучшения контакта электролит покрывают графитовым, а затем металлическим слоем. В качестве металла обычно используют серебро. Сформированный композит запрессовывают в компаунд.

Особенности танталовых конденсаторов

В отличие от электролитических, танталовые конденсаторы при переплюсовке или пробое взрываются. Сила взрыва зависит от размеров конденсатора и может повредить как соседние элементы, так и монтажную плату.

Пробои танталовых конденсаторов

При использовании этих эффективных, но немного капризных устройств, необходимо контролировать появление состояния отказа, поскольку известны случаи их возгорания при отказе. Отказы связаны с тем, что при неправильной эксплуатации пентаоксид тантала меняет аморфную структуру на кристаллическую, то есть из диэлектрика он превращается в проводник. Смена структур может наступить из-за слишком высокого пускового тока. Пробой диэлектрика вызывает повышение токов утечки, которые в свою очередь приводят к пробою самого конденсатора.

Причиной неприятностей, связанных с эксплуатацией танталовых конденсаторов, может быть диоксид марганца. Кислород, который присутствует в этом соединении, вызывает появление локальных очагов возгорания. Пробои с возгоранием характерны для старых моделей. Новые технологии позволяют получать более надежную продукцию.

Пробои, которые произошли при высоких температурах и напряжении, могут вызывать эффект лавины. В этом случае повреждения часто распространяются на большую часть или всю площадь устройства. Если же площадь кристаллизованного пентаоксида тантала небольшая, то часто происходит эффект самовосстановления. Он возможен, благодаря преобразованиям, происходящим в электролите в случае пробоя диэлектрика. В результате всех превращений кристаллизованный участок-проводник оказывается окруженным оксидом марганца, который полностью нейтрализует его проводимость.

Другие дефекты танталовых конденсаторов

Кроме пробоя, в результате неправильной производственной технологии и нарушения правил транспортировки и хранения в конденсаторе возникают и другие дефекты:

    Механические. Первый вид таких дефектов может появиться на выращенном диэлектрике в результате его резкого удара о твердую поверхность. Второй – при образовании электролитного слоя из-за совместного действия теплового удара и внутреннего давления газов в порах.
Читайте также:  Схемы дымоходов для газовых котлов

Примеси и включения. При нарушении производственной технологии на поверхности тантала могут появиться посторонние вещества – углерод, железо, кальций, которые приводят к неравномерности диэлектрического слоя.

Кристаллизованные участки диэлектрика, которые появились при изготовлении устройства. Кристаллизация может происходить из-за несоответствия состава электролита технологическим требованиям и неправильного температурного режима процесса.

Недостатки танталовых конденсаторов

Танталово-полимерные конденсаторы

Большая часть проблем, характерных для танталовых конденсаторов, решена в танталово-полимерных аналогах. В качестве электролита в танталово-полимерных конденсаторах вместо диоксида марганца используется токопроводящий полимер. Он дает минимальный ESR, что позволяет пропускать гораздо большие токи, по сравнению с танталовыми предшественниками. Танталово-полимерные устройства успешно применяются в качестве сглаживающих конденсаторов в источниках питания и преобразователях напряжения.

Токопроводящий полимер обеспечивает низкую чувствительность к импульсам тока, стойкость к внешним факторам, отсутствие деградации структуры, более высокий срок службы. Высокая стабильность емкости в широком интервале частот и температур позволяет применять танталово-полимерные устройства в промышленной, телекоммуникационной и автомобильной электронике и других областях, для которых характерно колебание рабочих температур.

Основные параметры танталовых конденсаторов

Для определения безопасного режима работы необходимо рассчитать уровни разрешенных значений тока и напряжения. Для расчетов необходимо знать следующие параметры танталовых конденсаторов, которые отражаются в документации:

  • Номинальная емкость. Эти устройства имеют высокую удельную емкость, которая может составлять тысячи микрофарад.
  • Номинальное напряжение. Современные модели этих устройств в большинстве рассчитаны на напряжения до 75 В. Причем, для нормальной работы в электрической схеме, деталь нужно использовать при напряжениях, которые меньше номинального. Эксплуатация танталовых конденсаторов при напряжениях, составляющих до 50% от номинального, снижает показатель отказов до 5%.
  • Импеданс (полное сопротивление). Содержит индуктивную составляющую, параллельное сопротивление, последовательное эквивалентное сопротивление (ESR).
  • Максимальная рассеиваемая мощность. При приложении к танталовому устройству переменного напряжения происходит выработка тепла. Допустимое повышение температуры конденсатора за счет выделяемой мощности устанавливается экспериментально.

Особенности проектирования плат и монтажа танталовых конденсаторов

Для этих устройств подходят практически все материалы печатных плат – FR4, FR5, G10, фторопласт, алюминий. Форма, размер посадочного места и способ монтажа указываются производителями деталей. Изменить рекомендуемые параметры монтажа может специалист, имеющий достаточно знаний и навыков, чтобы правильно скорректировать температуру пайки.

Перед монтажом на плату наносят паяльную пасту. Толщина слоя – 0,178+/-0,025 мм. Для того чтобы флюс, находящийся в пасте, эффективно растворил оксиды с мест контакта, подбирают оптимальный температурный режим пайки. Обычно это делают опытным путем.

Монтаж на плату осуществляется вручную или с помощью автоматизированного оборудования любого типа, применяемого сегодня. Пайка производится: вручную, волновым способом, в инфракрасных или конвекционных печах. Температурный режим предподогрева и пайки обычно предоставляют производители конкретной продукции.

Маркировка танталовых конденсаторов

В маркировке конденсаторов указывают стандартные параметры: емкость, номинальное напряжение, полярность. На корпусах типов B, C, D, E, V отображают все параметры, а на корпусе типа A вместо номинала напряжения указывают его буквенный код. В маркировке может указываться дополнительная информация – логотип производителя, код даты производства и другая.

Таблица буквенных кодов напряжения для корпусов типа A

Наверное, у каждого радиолюбителя хоть раз да взрывался танталовый конденсатор из-за неправильной переплюсовки.

В этой статье я расскажу, что такое танталовый конденсатор, зачем он нужен и как вообще с ним работать.

Если после прочтения у вас останутся вопросы – смело задавайте их в комментариях, а я постараюсь ответить.

Содержание статьи

Твердотельные танталовые конденсаторы по большинству параметров соответствуют требованиям к современным электронным устройствам. Они отличаются малыми габаритами, высокой удельной емкостью, надежностью (при соблюдении правил на всех этапах их жизни) и совместимостью с общепринятыми технологиями монтажа. Преимуществом является и то, что важный параметр конденсатора – ESR (эквивалентное последовательное сопротивление) – с ростом частоты не возрастает, а в некоторых случаях даже уменьшается. Чтобы сократить число отказов и продлить рабочий период устройства, необходимо учитывать его индивидуальные особенности при изготовлении, хранении, монтаже и во время работы.

Так выглядят танталовые конденсаторы

Почему тантал используют для производства конденсаторов

Тантал способен при окислении формировать плотную оксидную пленку, толщину которой можно регулировать с помощью технологических приемов, тем самым изменяя параметры конденсатора.

Помимо тантала конденсаторы делают из керамики, слюды, бумаги и алюминиевой фольги.

Описание и назначение танталовых конденсаторов

Современные танталовые конденсаторы имеют малые размеры и относятся к чип-компонентам, которые предназначены для монтажа на плате. Иначе такие детали называются SMD, что расшифровывается как «компоненты поверхностного монтажа». SMD детали удобны для автоматизированных процессов монтажа и пайки на печатные платы.

Основное назначение электролитических поляризованных танталовых конденсаторов – действовать в комплексе с резистором с целью обработки сигнала и сглаживания его пиков и острых импульсов.

Конденсаторы широко используются в автомобильной, промышленной, цифровой, аэрокосмической технике.

Устройство танталовых твердотельных конденсаторов

Танталовый конденсатор относится к электролитическому типу. В его состав входят 4 основные части: анод, диэлектрик, твердый электролит, катод. Изготовление танталового конденсатора состоит из ряда достаточно сложных технологических операций.

Изготовление анода

Пористую гранулированную структуру получают прессованием из высокоочищенного танталового порошка. В процессе спекания в условиях глубокого вакуума при температурах +1300…+2000°C из порошка образуется губчатая структура с развитой площадью поверхности. Благодаря ей, обеспечивается высокая емкость при небольшом объеме. Танталовый конденсатор при одинаковой с алюминиевым устройством емкости имеет гораздо меньший объем.

Формирование диэлектрического слоя

Диэлектрический оксидный слой выращивают на поверхности анода из пентаоксида тантала в процессе электрохимического окисления. Толщину оксида можно регулировать изменением напряжения. Обычно толщина диэлектрической пленки составляет доли микрометра. Оксидный слой имеет не кристаллическую, а аморфную структуру, которая обладает значительным электросопротивлением.

Получение электролита

Электролитом служит твердотельный полупроводник – диоксид марганца, – который получают термообработкой солей марганца в ходе окислительно-восстановительного процесса. Для этого анодный губчатый слой покрывают солями марганца, а затем нагревают их до получения диоксида марганца. Процесс повторяют несколько раз до полного покрытия анода.

Читайте также:  Санитарные нормы 42 128 4690 88

Формирование катодного слоя

Для улучшения контакта электролит покрывают графитовым, а затем металлическим слоем. В качестве металла обычно используют серебро. Сформированный композит запрессовывают в компаунд.

Особенности танталовых конденсаторов

В отличие от электролитических, танталовые конденсаторы при переплюсовке или пробое взрываются. Сила взрыва зависит от размеров конденсатора и может повредить как соседние элементы, так и монтажную плату.

Пробои танталовых конденсаторов

При использовании этих эффективных, но немного капризных устройств, необходимо контролировать появление состояния отказа, поскольку известны случаи их возгорания при отказе. Отказы связаны с тем, что при неправильной эксплуатации пентаоксид тантала меняет аморфную структуру на кристаллическую, то есть из диэлектрика он превращается в проводник. Смена структур может наступить из-за слишком высокого пускового тока. Пробой диэлектрика вызывает повышение токов утечки, которые в свою очередь приводят к пробою самого конденсатора.

Причиной неприятностей, связанных с эксплуатацией танталовых конденсаторов, может быть диоксид марганца. Кислород, который присутствует в этом соединении, вызывает появление локальных очагов возгорания. Пробои с возгоранием характерны для старых моделей. Новые технологии позволяют получать более надежную продукцию.

Пробои, которые произошли при высоких температурах и напряжении, могут вызывать эффект лавины. В этом случае повреждения часто распространяются на большую часть или всю площадь устройства. Если же площадь кристаллизованного пентаоксида тантала небольшая, то часто происходит эффект самовосстановления. Он возможен, благодаря преобразованиям, происходящим в электролите в случае пробоя диэлектрика. В результате всех превращений кристаллизованный участок-проводник оказывается окруженным оксидом марганца, который полностью нейтрализует его проводимость.

Другие дефекты танталовых конденсаторов

Кроме пробоя, в результате неправильной производственной технологии и нарушения правил транспортировки и хранения в конденсаторе возникают и другие дефекты:

    Механические. Первый вид таких дефектов может появиться на выращенном диэлектрике в результате его резкого удара о твердую поверхность. Второй – при образовании электролитного слоя из-за совместного действия теплового удара и внутреннего давления газов в порах.

Примеси и включения. При нарушении производственной технологии на поверхности тантала могут появиться посторонние вещества – углерод, железо, кальций, которые приводят к неравномерности диэлектрического слоя.

Кристаллизованные участки диэлектрика, которые появились при изготовлении устройства. Кристаллизация может происходить из-за несоответствия состава электролита технологическим требованиям и неправильного температурного режима процесса.

Недостатки танталовых конденсаторов

Танталово-полимерные конденсаторы

Большая часть проблем, характерных для танталовых конденсаторов, решена в танталово-полимерных аналогах. В качестве электролита в танталово-полимерных конденсаторах вместо диоксида марганца используется токопроводящий полимер. Он дает минимальный ESR, что позволяет пропускать гораздо большие токи, по сравнению с танталовыми предшественниками. Танталово-полимерные устройства успешно применяются в качестве сглаживающих конденсаторов в источниках питания и преобразователях напряжения.

Токопроводящий полимер обеспечивает низкую чувствительность к импульсам тока, стойкость к внешним факторам, отсутствие деградации структуры, более высокий срок службы. Высокая стабильность емкости в широком интервале частот и температур позволяет применять танталово-полимерные устройства в промышленной, телекоммуникационной и автомобильной электронике и других областях, для которых характерно колебание рабочих температур.

Основные параметры танталовых конденсаторов

Для определения безопасного режима работы необходимо рассчитать уровни разрешенных значений тока и напряжения. Для расчетов необходимо знать следующие параметры танталовых конденсаторов, которые отражаются в документации:

  • Номинальная емкость. Эти устройства имеют высокую удельную емкость, которая может составлять тысячи микрофарад.
  • Номинальное напряжение. Современные модели этих устройств в большинстве рассчитаны на напряжения до 75 В. Причем, для нормальной работы в электрической схеме, деталь нужно использовать при напряжениях, которые меньше номинального. Эксплуатация танталовых конденсаторов при напряжениях, составляющих до 50% от номинального, снижает показатель отказов до 5%.
  • Импеданс (полное сопротивление). Содержит индуктивную составляющую, параллельное сопротивление, последовательное эквивалентное сопротивление (ESR).
  • Максимальная рассеиваемая мощность. При приложении к танталовому устройству переменного напряжения происходит выработка тепла. Допустимое повышение температуры конденсатора за счет выделяемой мощности устанавливается экспериментально.

Особенности проектирования плат и монтажа танталовых конденсаторов

Для этих устройств подходят практически все материалы печатных плат – FR4, FR5, G10, фторопласт, алюминий. Форма, размер посадочного места и способ монтажа указываются производителями деталей. Изменить рекомендуемые параметры монтажа может специалист, имеющий достаточно знаний и навыков, чтобы правильно скорректировать температуру пайки.

Перед монтажом на плату наносят паяльную пасту. Толщина слоя – 0,178+/-0,025 мм. Для того чтобы флюс, находящийся в пасте, эффективно растворил оксиды с мест контакта, подбирают оптимальный температурный режим пайки. Обычно это делают опытным путем.

Монтаж на плату осуществляется вручную или с помощью автоматизированного оборудования любого типа, применяемого сегодня. Пайка производится: вручную, волновым способом, в инфракрасных или конвекционных печах. Температурный режим предподогрева и пайки обычно предоставляют производители конкретной продукции.

Маркировка танталовых конденсаторов

В маркировке конденсаторов указывают стандартные параметры: емкость, номинальное напряжение, полярность. На корпусах типов B, C, D, E, V отображают все параметры, а на корпусе типа A вместо номинала напряжения указывают его буквенный код. В маркировке может указываться дополнительная информация – логотип производителя, код даты производства и другая.

Таблица буквенных кодов напряжения для корпусов типа A

Конструкция и особенности танталовых конденсаторов

В настоящее время, кроме всем знакомых алюминиевых электролитических конденсаторов, в электронике применяются электролитические конденсаторы с диэлектриком из пентаоксида тантала. Вот о них и пойдёт речь далее.

Давайте узнаем, как устроен танталовый электролитический конденсатор, а также изучим его сильные и слабые стороны. Вот так выглядит танталовый чип-конденсатор для поверхностного монтажа ёмкостью 1 мкФ и рабочее напряжение 35V.

Как известно, на ёмкость конденсатора влияет площадь обкладок, а также толщина диэлектрика, который находится между ними.

В качестве анода в танталовом конденсаторе выступает порошок из тантала высокой степени очистки. Этот порошок прессуют и нагревают в вакууме до высокой температуры (1300 – 2000 0 С). В результате получается пористая структура, похожая на губку. За счёт высокой пористости удаётся получить большую площадь анодной обкладки.

Читайте также:  Столбчатый фундамент для бани из бруса

Формирование диэлектрика.

Далее при производстве конденсатора формируется диэлектрик. Это делается с помощью электрохимического окисления.

Меняя величину приложенного напряжения, формируют необходимую толщину слоя диэлектрика.

На пористой поверхности танталового анода образуется тончайшая плёнка диэлектрика – пентаоксида тантала Ta2O5. Благодаря этому оксиду удаётся получить очень тонкую и непроводящую плёнку. Отметим, что полученный диэлектрик имеет аморфную структуру и не проводит ток. Также существует кристаллический Ta2O5, но в отличие от аморфного он является проводником. Запомним эту особенность.

Только вдумайтесь, толщина плёнки диэлектрика Ta2O5 может составлять несколько сотен – тысяч ангстрем! Чтобы было более наглядно, переведём ангстремы в доли метра. 1 ангстрем = 1,0 * 10 -10 метра, другими словами 1 ангстрем = 0,1 нанометра. Таким образом, толщина слоя диэлектрика у танталового конденсатора составляет от 10 до 100 нанометров! Так что, нанотехнологии уже давно применяются на практике и удивляться этому не стоит.

Для сравнения. У рядовых алюминиевых электролитических конденсаторов толщина диэлектрика чуть менее 1 мкм (1 мкм = 0,000 001 метра). Это в 100 раз больше, чем толщина самой тонкой плёнки пентаоксида тантала в 10 нанометров.

Твёрдотельный электролит.

В качестве электролита в танталовых конденсаторах используется диоксид марганца MnO2. Данный оксид является твёрдотельным полупроводниковым материалом.

Полученную ранее губчатую структуру из пористого танталового порошка с образованным слоем диэлектрика пропитывают солями марганца. Далее с помощью окислительно-восстановительной реакции под нагревом формируют слой твёрдого электролита. Процесс повторяется несколько раз.

Особенности катода танталового конденсатора.

Для наилучшего контакта с выводом катода твёрдый электролит MnO2 покрывают слоем графита, а на его поверхность наносят металл, обычно это серебро. Так что в танталовых конденсаторах присутствует один из самых востребованных драгоценных металлов. О драгметаллах в радиодеталях читайте здесь.

Полученную конструкцию запрессовывают в компаунд. Вот так в общих чертах выглядит устройство и технология изготовления танталового конденсатора.

ESR танталовых конденсаторов.

ESR танталового конденсатора на низких частотах определяется сопротивлением диэлектрика Ta2O5, а на высоких частотах его определяет уже сопротивление электролита MnO2.

Как известно, импеданс (ёмкостное сопротивление) с ростом частоты падает вплоть до частот мегагерцового диапазона. А поскольку сопротивление электролита MnO2, которое входит в ESR также уменьшается с увеличением температуры, то на высоких частотах ESR тоже уменьшается.

Благодаря этому, танталовые конденсаторы прекрасно работают в импульсных источниках питания, рабочая частота которых выше 100 кГц. На высоких частотах ESR их очень мал.

Недостатки танталовых конденсаторов.

Особенностью танталовых конденсаторов является то, что пентаоксид тантала имеет аморфную структуру и не проводит ток. Но, вот кристаллический Ta2O5 является прекрасным проводником. Под действием внешней температуры и высокого напряжения в диэлектрике образуются участки с кристаллическим Ta2O5. Это приводит к резкому возрастанию токов утечки и пробою.

При малых областях кристаллизации Ta2O5 может проявляться эффект восстановления. Возросший ток через область пробоя вызывает сильный нагрев и, как следствие, химические реакции в структуре твёрдого электролита MnO2. В результате нескольких преобразований образуется непроводящий оксид марганца (MnO). Таким образом, место пробоя "закрывается" непроводящим ток оксидом.

Дефект конденсатора может быть вызван не только эксплуатацией в жёстких условиях.

Также причиной пробоя могут быть:

Механические повреждения диэлектрика при производстве, например, при ударе и вибрациях;

Повреждение слоя диэлектрика при формировании твёрдого электролита. Так как в результате формирования электролита происходит химическая реакция с выделением тепла и газа, то из-за этого может быть повреждён диэлектрик.

Любой, даже самый чистый материал имеет включения и загрязнения. Так и танталовый порошок имеет загрязнения в виде примесей: железа, кальция, углерода и т.д. Если слой диэлектрика будет слишком тонкий, чтобы покрыть участки загрязнения, то в месте присутствия примесей образуется утечка и пробой.

Наличие вкраплений кристаллического оксида тантала, которые могут образоваться в процессе производства или быть результатом некачественного сырья.

При пайке методом оплавления, который применяется на массовом производстве, наблюдается так называемая "газация" танталовых чип-конденсаторов. Дело в том, что при их неправильном хранении или из-за низкого качества самих изделий, конденсаторы впитывают влагу. Это приводит к тому, что при нагреве влага превращается в пар и вырывается наружу. Это приводит к повреждению корпуса и смещению рядом установленных компонентов.

Особенности применения танталовых конденсаторов.

В настоящее время в широкой продаже имеются танталовые конденсаторы на номинальное напряжение до 75V. Как оказалось, танталовые конденсаторы очень чувствительны к превышению номинального напряжения. Наблюдения показали, что если снизить рабочее напряжение на 50%, то показатель отказов снижается на 5%. Именно поэтому их рекомендуют использовать в схемах, где рабочее напряжение ниже номинального напряжения.

Обычно танталовые конденсаторы встречаются на печатных платах в виде SMD-элементов жёлто-оранжевого цвета. Несмотря на свои скромные размеры, они обладают ёмкостью в несколько десятков – сотен микрофарад и рассчитаны на рабочее напряжение от 4 до 75 вольт. Со стороны плюсового вывода на их корпус наносится полоса.

Танталовые конденсаторы для монтажа в отверстия обычно имеют каплевидную форму, покрыты жёлто-оранжевым компаундом и имеют со стороны плюсового вывода метку в виде линии.

Маркировка танталовых конденсаторов похожа на маркировку керамических. Ёмкость указывается тремя цифрами, последняя указывает на количество нулей. Таким образом, запись 226 говорит нам о том, что ёмкость равна 22 000 000 пикофарад = 22 000 нанофарад = 22 микрофарады. Номинальное напряжение (Rated Voltage) указывается ниже. Далее на фото видно, что номинальное напряжение конденсатора равно 35 вольтам (надпись 35).

На некоторых конденсаторах маркировка иная. После числового значения ёмкости ставится буква µ (микро), а после номинального напряжения конденсатора указывается буква V.

На фото показан танталовый конденсатор ёмкостью 10 мкФ и номинальное напряжение 16V.

Понравилась статья? Поделиться с друзьями:
ТурбоЗайм
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.

Adblock detector