Содержание
Принципиальная тепловая схема (ПТС) котельной с паровыми котлами для потребителей пара и горячей воды показана на рис. 8.
Паровые котельные чаще всего предназначены для одновременного отпуска пара и горячей воды, поэтому в их тепловых схемах имеются установки для подогрева горячей воды.
Обычно устанавливаются паровые котлы низкого давления 14 ата, но не выше 24 ата.
Сырая вода поступает из водопровода с напором в 30–40 м. вод. ст. Если напор сырой воды недостаточен, предусматривают установку насосов сырой воды 5.
Сырая вода подогревается в охладителе непрерывной продувки паровых котлов 11 и в пароводяном подогревателе сырой воды 12 до температуры 20-30 ºС. Далее вода проходит через водоподготовительную установку (ВПУ), и часть ее направляется в подогреватель химически очищенной воды 13, часть проходит через охладитель выпара деаэратора 4 и поступает в деаэратор питательной воды (ДПВ) 2. В этот деаэратор направлены также потоки конденсата и пар после редукционно-охладительной установки (РОУ) 17 с давлением 1,5 ата для подогрева деаэрируемой воды до 104 0 С. Деаэрированная вода при помощи питательного насоса (ПН) 6 подается в водяные экономайзеры котла и к охладителю РОУ. Часть выработанного котлами пара редуцируется в РОУ и расходуется для подогрева сырой воды и деаэрации.
Рис. 8. Принципиальная тепловая схема котельной с паровыми котлами
1– котел паровой, 2 – деаэратор питательной воды (ДПВ), 3 – деаэратор подпиточной воды, 4 – охладитель выпара, 5 – насос сырой воды, 6 – насос питательный (ПН), 7 – насос подпиточный, 8 – насос сетевой (СН), 9 – насос конденсатный (КН), 10 – бак конденсатный, 11 – охладитель продувочной воды (ОПВ), 12 – подогреватель сырой воды, 13 – подогреватель хим. очищенной воды (ПХОВ), 14 – охладитель подпиточной воды, 15 – охладитель конденсата, 16 – подогреватель сетевой воды, 17 – редукционно-охладительная установка (РОУ), 18 – сепаратор непрерывной продувки, 19 – продувочный колодец, ВПУ – водоподготовительная установка.
Вторая часть потока хим. очищенной воды подогревается в подогревателе 14, частично в охладителе выпара 4 и направляется в деаэратор подпиточной воды для тепловых сетей 3. Вода после этого деаэратора проходит водо-водяной теплообменник 14 и подогревает хим. очищенную воду. Подпиточным насосом 7 вода подается в трубопровод перед сетевыми насосами 8, которые прокачивают сетевую воду сначала через охладитель конденсата 15 и затем через подогреватель сетевой воды 16, откуда вода идет в тепловую сеть.
Деаэратор подпиточной воды 3 также использует пар низкого давления после РОУ. При закрытой системе теплоснабжения расход воды на подпитку тепловых сетей обычно незначителен. В этом случае довольно часто не выделяют отдельного деаэратора для подготовки подпиточной воды тепловых сетей, а используют деаэратор питательной воды паровых котлов.
На приведенной схеме предусматривается использование теплоты непрерывной продувки паровых котлов. Для этой цели устанавливают сепаратор непрерывной продувки 18, в котором вода частично испаряется за счет снижения ее давления от 14 до 1,5 ата. Образующийся пар отводится в паровое пространство деаэратора, горячая вода направляется в водо-водяной теплообменник сырой воды 11. Охлажденная продувочная вода сбрасывается в продувочный колодец.
Непрерывная продувка обеспечивает равномерное удаление из котла накопившихся растворенных солей и осуществляется из места наибольшей их концентрации в верхнем барабане котла. Периодическая продувка применяется для удаления шлама, осевшего в элементах котла, и производится из нижних барабанов и коллекторов котла через каждые 12-16 часов. Иногда предусматривают подачу продувочной воды для подпитки закрытых тепловых сетей. Подпитка тепловых сетей продувочной водой допускается только в том случае, когда общая жесткость сетевой воды не превышает 0,05 мг-экв/кг.
ПТС котельной для открытых систем теплоснабжения отличается от приведенной только установкой дополнительного деаэратора для деаэрации подпиточной воды тепловых сетей и установкой баков-аккумуляторов.
Конденсат от пароводяных подогревателей под давлением греющего пара во всех случаях следует направлять в ДПВ, минуя конденсатные баки 10 и насосы 9. При открытых системах теплоснабжения для деаэрации подпиточной воды устанавливают, как правило, атмосферные деаэраторы. Использование продувочной воды котлов в качестве подпиточной для открытых систем не допускается. Температура питательной воды после деаэратора 104 °С. Температура возвращаемого с производства конденсата 80–95 °С.
Принципиальная тепловая схема котельной с водогрейными котлами для закрытых систем теплоснабжения
ПТС котельных с водогрейными котлами для закрытых систем теплоснабжения показана на рис. 9.
Вода из обратной линии тепловых сетей с небольшим напором 20–40 м. вод. ст. поступает к сетевым насосам 2. Туда же подводится вода от подпиточных насосов 5, компенсирующая утечки волы в тепловых сетях. К насосу 2 подается и горячая сетевая вода, теплота которой частично использована в теплообменниках для подогрева хим. очищенной воды 8 и сырой воды 7.
Для обеспечения температуры воды на входе в котел, заданной по условиям предупреждения коррозии, в трубопровод за сетевым насосом 2 подают необходимое количество горячей воды, вышедшей из водогрейных котлов 1. Вода подается рециркуляционным насосом 3.
При всех режимах работы тепловой сети, кроме максимально зимнего, часть воды из обратной линии после насосов 2, минуя котлы, подают по линии перепуска в количестве Gпер в подающую магистраль, где вода, смешиваясь с горячей водой из котлов, обеспечивает заданную расчетную температуру в подающей магистрали тепловых сетей.
Добавка хим. очищенной воды подогревается в теплообменниках 9, 8, 11 и деаэрируется в деаэраторе 10. Воду для подпитки тепловых сетей из баков 6 забирает подпиточный насос 5 и подает в обратную линию.
Для сокращения расхода воды на рециркуляцию ее температура на выходе из котлов поддерживается, как правило, выше температуры воды в подающей линии теплосети. Только при расчетном максимально зимнем режиме температура воды на выходе из котлов и в подающей линии будет одинаковой.
Для закрытых систем даже в мощных водогрейных котельных можно обойтись одним деаэратором подпиточной воды с невысокой производительностью. Уменьшается также мощность подпиточных насосов 5 и оборудование ВПУ, снижаются требования к качеству подпиточной воды по сравнению с открытыми системами.
Недостаток закрытых систем – некоторое удорожание оборудования абонентских узлов горячего водоснабжения.
Водогрейные котлы надежно работают лишь при условии поддержания постоянства количества проходящей через них воды. Расход воды должен быть постоянным, независимо от колебаний тепловых нагрузок. Поэтому регулирование отпуска тепловой энергии в сеть необходимо осуществить путем изменения температуры воды на выходе их котлов Gпер.
Для уменьшения интенсивности наружной коррозии трубных поверхностей стальных водогрейных котлов необходимо поддерживать температуру воды на входе в котлы выше температуры точки росы дымовых газов.
Минимальная допустимая температура на входе в котлы рекомендуется следующая: при работе на природном газе – не ниже 60 °С; при работе на малосернистом мазуте – не ниже 70 °С; при работе на высокосернистом мазуте – не ниже 110°С. Так как температура обратной сетевой воды почти всегда ниже 60 °С в тепловых схемах предусматривается линия рециркуляции.
Для определения температуры воды в тепловых сетях для различных расчетных температур наружного воздуха строятся графики, разработанные теплоэлектропроектом. Например, из такого графика видно, что при температурах наружного воздуха +3 ºС и выше вплоть до конца отопительного сезона температура прямой сетевой воды постоянна и равна 70 0 С.
Среднечасовой расход в сутки теплоты на горячее водоснабжение обычно составляет 20% общей теплопроизводительности котельной:
3 % – потери наружных тепловых сетей;
3 % – расходы на собственные нужды от установленной теплопроизводительности котельной;
0,25 % – утечка из тепловых сетей закрытых систем;
0,25 % – объем воды в трубах тепловых сетей.
Рис. 9. Принципиальная тепловая схема котельной с водогрейными котлами для закрытой системы теплоснабжения
1 – котел водогрейный, 2 – насос сетевой (СН), 3 – насос рециркуляции, 4 – насос сырой воды (НСВ), 5 – насос подпиточной воды, 6 – бак подпиточной воды, 7 – подогреватель сырой воды, 8 – подогреватель хим. очищенной воды (ПХОВ), 9 – охладитель подпиточной воды, 10 – деаэратор, 11 – охладитель выпара, 12 – водоподготовительная установка (ВПУ).
Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.
Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ — конструкции, предназначенные для поддерживания проводов на необходимой высоте над землей, водой.
В зависимости от характера тепловых нагрузок котельные разделяют на следующие типы:
Производственные – предназначенные для снабжения теплом технологических потребителей.
Производственно-отопительные – осуществляющие теплоснабжение технологических потребителей, а также дающие тепло для отопления, вентиляции и горячего водоснабжения промышленных, общественных, жилых зданий и сооружений.
Отопительные – вырабатывающие тепловую энергию для нужд отопления, вентиляции и горячего водоснабжения жилых, общественных, промышленных зданий и сооружений.
По надежности отпуска тепла потребителям котельные относятся:
— к первой категории – котельные, являющиеся единственным источником тепла системы теплоснабжения и обеспечивающие потребителей первой категории, не имеющих индивидуальных резервных источников тепла;
— ко второй категории – остальные котельные.
Потребители тепла по надежности теплоснабжения относятся:
— к первой категории – потребители, нарушение теплоснабжения которых связано с опасностью для жизни людей или со значительным ущербом народному хозяйству (повреждение технологического оборудования, массовый брак продукции);
— ко второй категории – остальные потребители тепла.
3.2.1. Тепловые схемы котельных с водогрейными котлами и основы их расчета
Для того чтобы тепловые схемы котельных с водогрейными котлами легко читались, рекомендуется следующий порядок изображения оборудования на них (см. рис. 3.1). На верхней правой части листа размещают водогрейные котлы, а на левой – деаэраторы, ниже котлоагрегатов размещают рециркуляционные и еще ниже сетевые насосы, а под деаэраторами – теплообменники (подогреватели), баки деаэрированной и рабочей воды, подпиточные насосы, насосы сырой воды, дренажные баки и продувочный колодец.
Работа отопительной котельной, принципиальная тепловая схема которой показана на рис. 3.1, осуществляется следующим образом. Вода из обратной линии тепловых сетей с небольшим напором поступает на всас сетевого насоса 2. Туда же подводится вода от подпиточного насоса 6, компенсирующая утечки воды в тепловых сетях. На всас насоса 2 подается и горячая вода, тепло которой частично использовано в теплообменниках 9 и 4 для подогрева, соответственно, химически очищенной и сырой воды.
Для обеспечения заданной из условий предупреждения коррозии температуры воды перед котлом в трубопровод за сетевым насосом подают при помощи рециркуляционного насоса 12 необходимое количество горячей воды, вышедшей из водогрейного котла 1. Линию, по которой подают горячую воду, называют рециркуляционной. При всех режимах работы тепловой сети, кроме максимально-зимнего, часть воды из обратной линии после сетевого насоса 2, минуя котел, подают по перепускной линии в подающую магистраль, где она, смешавшись с горячей водой из котла, обеспечивает заданную расчетную температуру в подающей магистрали тепловых сетей. Вода, предназначенная для восполнения утечек в тепловых сетях, предварительно подается насосом сырой воды 3 в подогреватель сырой воды 4, где она подогревается до температуры 18–20 ºC и затем направляется на химводоочистку. Химически очищенная вода подогревается в теплообменниках 8, 9 и 11 и деаэрируется в деаэраторе 10. Воду для подпитки тепловых сетей из бака деаэрированной воды 7 забирает подпиточный насос 6 и подает в обратную линию.
Рис. 3.1. Тепловая схема котельной с водогрейными котлами:
1 – водогрейный котел; 2 – сетевой насос; 3 – насос сырой воды; 4 – подогреватель сырой воды; 5 – химводоочистка; 6 – подпиточный насос; 7 – бак деаэрированной воды; 8 – охладитель деаэрированной воды; 9 – подогреватель химически очищенной воды; 10 – деаэратор; 11 – охладитель выпара; 12 – рециркуляционный насос
Обозначения трубопроводов (буква с цифрой) выполнены в соответствии с табл. 3.4
Основной целью расчета любой тепловой схемы котельной является выбор основного и вспомогательного оборудования с определением исходных данных для последующих технико-экономических расчетов.
Надежность и экономичность водогрейных котлов зависит от постоянства расхода воды через них, который не должен снижаться относительно установленного заводом-изготовителем. Во избежание низкотемпературной и сернокислотной коррозии конвективных поверхностей нагрева температура воды на входе в котел при сжигании топлив, не содержащих серу, должна быть не менее 60 ºС, малосернистых топлив не менее 70 ºС и высокосернистых топлив не менее 110 ºС. Для повышения температуры воды на входе в водогрейный котел при температурах воды ниже указанных устанавливается рециркуляционный насос.
В котельных с водогрейными котлами часто устанавливаются вакуумные деаэраторы. Но они требуют при эксплуатации тщательного надзора, поэтому предпочитают устанавливать деаэраторы атмосферного типа.
Сильное влияние на оборудование котельной с водогрейными агрегатами оказывает система горячего водоснабжения – закрытая или открытая. Открытой называется система, в которой теплоноситель – горячая вода – частично или полностью используется потребителем. В закрытых системах нагрев воды на горячее водоснабжение осуществляется прямой отопительной водой в местных теплообменниках.
При открытой системе горячего водоснабжения количество воды, идущее на подпитку тепловых сетей, заметно возрастает и может достигать 20% расхода воды через тепловые сети. Т.е. количество воды, которое необходимо подготовить на химводоочистке, при открытой системе горячего водоснабжения возрастает в несколько раз по сравнению с закрытой.
Так как расходы воды при открытой системе неравномерны, то для выравнивания суточного графика нагрузок на горячее водоснабжение и уменьшения расчетной производительности оборудования водоподготовки устанавливаются баки-аккумуляторы для деаэрированной воды. Из них в часы максимума потребления горячая вода подпиточными насосами подается на всас сетевых насосов.
Качество подготовки воды для подпитки открытой системы теплоснабжения должно быть значительно выше качества воды для подпитки закрытой системы, т.к. к воде горячего водоснабжения предъявляются такие же требования, как к питьевой водопроводной воде.
Перед расчетом тепловой схемы котельной, работающей на закрытую систему теплоснабжения, следует выбрать схему присоединения к системе теплоснабжения местных теплообменников, приготовляющих воду для нужд горячего водоснабжения. В настоящее время в основном применяются три схемы присоединения местных теплообменников, показанные на рис. 3.2.
На рис. 3.2 а показана схема параллельного присоединения местных теплообменников горячего водоснабжения с системой отопления потребителей. На рис. 3.2 б, в показаны двухступенчатая последовательная и смешанная схемы включения местных теплообменников горячего водоснабжения.
Рис. 3.2. Схемы присоединения местных теплообменников:
а – параллельное; б – двухступенчатое последовательное; в – смешанная схема включения
Выбор схемы присоединения местных теплообменников горячего водоснабжения производится в зависимости от отношения максимального расхода теплоты на горячее водоснабжение к максимальному расходу теплоты на отопление. При Qг.в/Qо≤0,06 присоединение местных теплообменников производится по двухступенчатой последовательной схеме; при 0,6
,
где Gох, Gн – массовый расход, соответственно, охлаждаемого и нагреваемого теплоносителей, кг/с; cох, cн –средняя удельная теплоемкость, соответственно, охлаждаемого и нагреваемого теплоносителей, кДж/(кг·°C); – соответственно, начальная и конечная температуры охлаждаемого теплоносителя, °C;
– соответственно, начальная и конечная температуры нагреваемого теплоносителя, °C; η – КПД теплообменника.
При расхождении предварительно принятых в расчете величин с полученными в результате расчета более чем на 3% расчет следует повторить, подставив в качестве исходных данных полученные значения.
Категории
- Водогрейные котлы
- Паровые котлы
- Топки
- Батарейные циклоны
- Модульные котельные
- Циклоны
- Комплектующие
- Дымососы
- Нет категории
- Колосники
- Топливоподача
- Золоуловители
- Котловая автоматика
- Трубы котлов
- Дымовые трубы
- Водоподготовка
- Забрасыватель
- Электроды
- Паровые котельные
- Резервуары
- Скиповые подъемники
Тепловые схемы котельных с водогрейными котлами для закрытых систем теплоснабжения
Тепловые схемы котельных с водогрейными котлами для закрытых систем теплоснабжения
Выбор системы теплоснабжения (открытая или закрытая) производится на основе технико-экономических расчетов. Пользуясь данными, полученными от заказчика, и методикой, изложенной в § 5.1, приступают к составлению, затем и расчету схем, которые называются тепловые схемы котельных с водогрейными котлами для закрытых систем теплоснабжения, поскольку максимальная теплопроизводительность чугунных котлов не превышает 1,0 — 1,5 Гкал/ч.
Так как рассмотрение тепловых схем удобнее вести на практических примерах, ниже приведены принципиальные и развернутые схемы котельных с водогрейными котлами. Принципиальные тепловые схемы котельных с водогрейными котлами для закрытых систем теплоснабжения, работающей на закрытую систему теплоснабжения, показана на рис. 5.7.
Рис. 5.7. Принципиальные тепловые схемы котельных с водогрейными котлами для закрытых систем теплоснабжения.
1 — котел водогрейный; 2 — насос сетевой; 3 — насос рециркуляционный; 4 — насос сырой воды; 5 — насос подпиточной воды; 6 — бак подпиточной воды; 7 — подогреватель сырой воды; 8 — подогреватель химии чески очищенной воды; 9 — охладитель подпиточной воды; 10 — деаэратор; 11 — охладитель выпара.
Вода из обратной линии тепловых сетей с небольшим напором (20 — 40 м вод. ст.) поступает к сетевым насосам 2. Туда же подводится вода от подпиточных насосов 5, компенсирующая утечки воды в тепловых сетях. К насосам 1 и 2 подается и горячая сетевая вода, теплота которой частично использована в теплообменниках для подогрева химически очищенной 8 и сырой воды 7.
Для обеспечения температуры воды перед котлами, заданной по условиям предупреждения коррозии, в трубопровод за сетевым насосом 2 подают необходимое количество горячей воды, вышедшей из водогрейных котлов 1. Линию, по которой подают горячую воду, называют рециркуляционной. Вода подается рециркуляционным насосом 3, перекачивающим нагретую воду. При всех режимах работы тепловой сети, кроме максимально зимнего, часть воды из обратной линии после сетевых насосов 2, минуя котлы, подают по линии перепуска в количестве G пер в подающую магистраль, где вода, смешиваясь с горячей водой из котлов, обеспечивает заданную расчетную температуру в подающей магистрали тепловых сетей. Добавка химически очищенной воды подогревается в теплообменниках 9, 8 11 деаэрируется в деаэраторе 10. Воду для подпитки тепловых сетей из баков 6 забирает подпиточный насос 5 и подает в обратную линию.
Даже в мощных водогрейных котельных, работающих на закрытые системы теплоснабжения, можно обойтись одним деаэратором подпиточной воды с невысокой производительностью. Уменьшается также мощность подпиточных насосов, оборудование водоподготовительной установки и снижаются требования к качеству подпиточной воды по сравнению с котельными для открытых систем. Недостатком закрытых систем является некоторое удорожание оборудования абонентских узлов горячего водоснабжения.
Для сокращения расхода воды на рециркуляцию ее температура на выходе из котлов поддерживается, как правило, выше температуры воды в подающей линии тепловых сетей. Только при расчетном максимально зимнем режиме температуры воды на выходе из котлов и в подающей линии тепловых сетей будут одинаковы. Для обеспечения расчетной температуры воды на входе в тепловые сети к выходящей из котлов воде подмешивается сетевая вода из обратного трубопровода. Для этого между трубопроводами обратной и подающей линии, после сетевых насосов, монтируют линию перепуска.
Наличие подмешивания и рециркуляции воды приводит к режимам работы стальных водогрейных котлов, отличающимся от режима тепловых сетей. Водогрейные котлы надежно работают лишь при условии поддержания постоянства количества воды, проходящей через них. Расход воды должен поддерживаться в заданных пределах независимо от колебаний тепловых нагрузок. Поэтому регулирование отпуска тепловой энергии в сеть необходимо осуществлять путем изменения температуры воды на выходе из котлов.
Для уменьшения интенсивности наружной коррозии труб поверхностей стальных водогрейных котлов необходимо, поддерживать температуру воды на входе в котлы выше температуры точки росы дымовых газов. Минимально допустимая температура воды на входе в котлы рекомендуется следующая:
- при работе на природном газе — не ниже 60°С;
- при работе на малосернистом мазуте — не ниже 70°С;
- при работе на высокосернистом мазуте — не ниже 110°С.
В связи с тем, что температура воды в обратных линиях тепловых сетей почти всегда ниже 60°С, тепловые схемы котельных с водогрейными котлами для закрытых систем теплоснабжения предусматривают, как отмечено ранее, рециркуляцинонные насосы и соответствующие трубопроводы. Для определения необходимой температуры воды за стальными водогрейными котлами должны быть известны режимы работы тепловых сетей, которые отличаются от графиков или режимных котлоагрегатов.
Во многих случаях водяные тепловые сети рассчитываются для работы по так называемому отопительному температурному графику типа, показанного на рис. 2.9. Расчет показывает, что максимальный часовой расход воды, поступающей в тепловые сети от котлов, получается при режиме, соответствующем точке излома графика температур воды в сетях, т. е. при температуре наружного воздуха, которой соответствует на низшей температура воды в подающей линии. Эту температуру поддерживают постоянной даже при дальнейшем повышении температуры наружного воздуха.
Исходя из изложенного, в расчет тепловой схемы котельной вводят пятый характерный режим, отвечающий точке излома графика температур воды в сетях. Такие графики строятся для каждого района с соответствующей последнему расчетной температурой наружного воздуха по типу показанного на рис. 2.9. С помощью подобного графика легко находятся необходимые температуры в подающей и обратной магистралях тепловых сетей и необходимые температуры воды на выходе из котлов. Подобные графики для определения температур воды в тепловых сетях для различных расчетных температур наружного воздуха — от -13°С до — 40°С разработаны Теплоэлектропроектом.
Температуры воды в подающей и в обратной магистралях,°С, тепловой сети могут быть определены по формулам:
где tвн — температура воздуха внутри отапливаемых помещений,°С; tH — расчетная температура наружного воздуха для отопления,°С; t′H — изменяющаяся во времени температура наружного воздуха,°С;π′i — температура воды в подающем трубопроводе при tн°С; π2 — температура воды в обратном трубопроводе при tн°С;tн — температура воды в подающем трубопроводе при t′н,°С; ∆т — расчетный перепад температур, ∆t = π1 — π2,°С; θ =πз -π2 — расчетный перепад температур в местной системе,°С; π3 = π1+ aπ2 / 1+ a — расчетная температура воды, поступающей в отопительный прибор, °С; π′2 — температура воды, идущей в обратный трубопровод от прибора при t’H,°С; а — коэффициент смещения, равный отношению количества обратной воды, подсасываемой элеватором, к количеству сетевой воды.
Сложность расчетных формул (5.40) и (5.41) для определения температуры воды в тепловых сетях подтверждает целесообразность использования графиков типа показанного на рис. 2.9, построенного для района с расчетной температурой наружного воздуха — 26 °С. Из графика видно, что при температурах наружного воздуха 3°C и выше вплоть до конца отопительного сезона температура воды в подающем трубопроводе тепловых сетей постоянна и равна 70 °С.
Исходными данными для расчетов тепловых схем котельных со стальными водогрейными котлами для закрытых систем теплоснабжения, как указывалось выше, служат расходы теплоты на отопление, вентиляцию и горячее водоснабжение с учетом тепловых потерь в котельной, сетях и расхода теплоты на собственные нужды котельной.
Соотношение отопительно-вентиляционных нагрузок и нагрузок горячего водоснабжения уточняется в зависимости от местных условий работы потребителей. Практика эксплуатации отопительных котельных показывает, что среднечасовой за сутки расход теплоты на горячее водоснабжение составляет около 20 % полной теплопроизводительности котельной. Тепловые потери в наружных тепловых сетях рекомендуется принимать в размере до 3 % общего расхода теплоты. Максимальные часовые расчетные расходы тепловой энергии на собственные нужды котельной с водогрейными котлами при закрытой системе теплоснабжения можно принять по рекомендации [9] в размере до 3 % установленной теплопроизводительности всех котлов.
Суммарный часовой расход воды в подающей линии тепловых сетей на выходе из котельной определяется, исходя из температурного режима работы тепловых сетей, и, кроме того, зависит от утечки воды через не плотности. Утечка из тепловых сетей для закрытых систем теплоснабжения не должна превышать 0,25 % объема воды в трубах тепловых сетей.
Допускается ориентировочно принимать удельный объем воды в местных системах отопления зданий на 1 Гкал/ч суммарного расчетного расхода теплоты для жилых районов 30 м 3 и для промышленных предприятий — 15 м 3 .
С учетом удельного объема воды в трубопроводах тепловых сетей и подогревательных установках общий объем воды в закрытой системе ориентировочно можно принимать равным для жилых районов 45 — 50 м 3 , для промышленных предприятий — 25 — 35 MS на 1 Гкал/ч суммарного расчетного расхода теплоты.
Рис. 5.8. Развернутаые тепловые схемы котельных с водогрейными котлами для закрытых систем теплоснабжения.
1 — котел водогрейный; 2 — насос рециркуляционный; 3 — насос сетевой; 4 — насос сетевой летний; 5 — насос сырой воды; 6 — насос конденсатный; 7 — бак конденсатный; 8 — подогреватель сырой воды; 9 — подогреватель химически очищенной воды; 10 — деаэратор; 11 — охладитель выпара.
Иногда для предварительного определения количества утекающей из закрытой системы сетевой воды эту величину принимают в пределах до 2 % расхода воды в подающей линии. На основе расчета принципиальной тепловой схемы и после выбора единичных производительностей основного и вспомогательного оборудования котельной составляется полная развернутая тепловая схема. Для каждой технологической части котельной обычно составляются раздельные развернутые схемы, т. е. для оборудования собственно котельной, химводоочистки и мазутного хозяйства. Развернутая тепловая схема котельной с тремя водогрейными котлами КВ -ТС — 20 для закрытой системы теплоснабжения показана на рис. 5.8.
В верхней правой части этой схемы размещены водогрейные котлы 1, а в левой — деаэраторы 10 ниже котлов размещены рециркуляцинонные ниже сетевые насосы, под деаэраторами — теплообменники (подогреватели) 9, бак деаэрированной воды 7, подпилочные насосы 6, насосы сырой воды 5, дренажные баки и продувочный колодец. При выполнении развернутых тепловых схем котельных с водогрейными котлами применяют обще станционную или агрегатную схему компоновки оборудования (рис. 5.9).
Общестанционные тепловые схемы котельных с водогрейными котлами для закрытых систем теплоснабжения характеризуется присоединением сетевых 2 и рециркуляционных 3 насосов, при котором вода из обратной линии тепловых сетей может поступать к любому из сетевых насосов 2 и 4, подключенных к магистральному трубопроводу, питающему водой все котлы котельной. Рециркуляцинонные насосы 3 подают горячую воду из общей линии за котлами также в общую линию, питающую водой все водогрейные котлы.
При агрегатной схеме компоновки оборудования котельной, изображенной на рис. 5.10, для каждого котла 1 устанавливаются сетевые 2 и рециркулярные насосы 3.
Рис 5.9 Общестанционная компоновка котлов сетевых и рециркуляционных насосов.1 — котел водогрейный , 2 — рециркуляционный , 3 — насос сетевой, 4 — насос сетевой летний.
Рис. 5-10. Агрегатная компоновка котлов КВ — ГМ — 100, сетевых и рециркуляционных насосов. 1 — насос водогрейный; 2 — насос сетевой; 3 — насос рециркуляционный.
Вода из обратной магистрали поступает параллельно ко всем сетевым насосам, а нагнетательный трубопровод каждого насоса подключен только к одному из водонагревательных котлов. К рециркуляционному насосу горячая вода поступает из трубопроводом за каждым котлом до включения его в общую падающую магистраль и направляется в питательную линию того же котлоагрегата. При компоновке при агрегатной схеме предусматривается установка одного для всех водогрейных котлов. На рис.5.10 линии подпиточной и горячей воды к основным трубопроводам и теплообменником не показаны.
Агрегатный способ размещения оборудования особенно широко применяется в проектах водогрейных котельных с крупными котлами ПТВМ — 30М, КВ — ГМ 100. и др. Выбор обще станционного или агрегатного способа компоновки оборудования котельных с водогрейными котлами в каждом отдельном случае решается, исходя из эксплуатационных соображений. Важнейшими из них из компоновки при агрегатной схеме является облегчение учета и регулирования расхода и параметра теплоносителя от каждого агрегата магистральных теплопроводов большого диаметра и упрощение ввода в эксплуатацию каждого агрегата.
Котельный завод Энергия-СПБ производит различные модели водогрейных котлов. Транспортирование котлов и другого котельно-вспомогательного оборудования осуществляется автотранспортом, ж/д полувагонами и речным транспортом. Котельный завод поставляет продукцию во все регионы России и Казахстана.