Температурная зависимость удельного сопротивления металлов

Лабораторная работа № 10

Исследование проводниковых материалов

Цель работы

1. Изучить процессы, протекающие в проводниках в электрическом поле.

2. Исследовать основные свойства проводников по температурным зависимостям проводимости.

Основные теоретические положения

Электроны в металлах

Проводники электрического тока могут быть твердыми телами, жидкостями, а при выполнении ряда условий — и газами.

К твердым проводникам относятся металлы (металлические материалы)

По величине удельного сопротивления р металлические проводники делятся на следующие группы:

— металлы и сплавы с высокой удельной проводимостью γ

— металлы и сплавы со средним значением ρ;

— металлы и сплавы с высоким значением ρ.

Металлические проводники – основной тип проводниковых материалов, применяемых в микроэлектронике. Согласно классической электронной теории в металлах есть электронный газ, представленный свободными электронами. Именно электрон в металле переносит электронный заряд. Под действием электрического поля электроны приобретают направление (хаотическое) движение, что получило выражение в законе Ома, законе Джоуля-Ленца.

где, – скорость теплового движения электрона

– средняя длина свободного пробега

– масса покоя электрона

– напряженность электрического поля

Электроны обладают определенным значением энергии, тем самым распределяются по энергетическим состояниям (уровням). В квантовой теории максимальное значение энергии, которую может иметь электрон в металле при температуре абсолютного нуля называют энергией Ферми или уровнем Ферми.

При изменении температуры энергия Ферми изменяется незначительно, что является спецификой вырожденного состояния электронного газа. Например, при нагревании серебра от 0 до 1000 К энергия Ферми у него уменьшается лишь на 0,2 %. Столь малые изменения в таком широком температурном диапазоне можно не учитывать.

Таким образом, проводимость определяется, в основном, средней длиной свободного пробега электронов, которая, в свою очередь, зависит от структуры проводника, т.е. химической природы атомов, элктронно-ядерной структурной организации и типа кристаллической решетки.

Температурная зависимость удельного сопротивления металлических проводников

В идеальном кристалле длина свободного пробега электронов равна бесконечности, а сопротивление электрическому току равно нулю.

В теории колебаний атомных остовов решетки следует учитывать не только амплитуду колебаний, но и частоту. Так, максимальная частота тепловых колебаний определяется температурой Дебая Ɵд.

Эта температура зависит от длины и энергии связи между атомными остовами в узлах кристаллической решетки и является важным параметром твердого тела.

При Т > Ɵд. удельное сопротивление металлов изменяется линейно с температурой (рис. 1. участок III).

Для большинства металлов характеристическая температура Дебая не превышает 400-450 К. Поэтому линейное приближение обычно справедливо при температурах от комнатной и выше. В низкотемпературной области (Т

( , м)

В пределах переходной области II происходит быстрый рост удельного сопротивления ρ (Т), где n может быть до 5 и постепенно убывает с ростом температуры

Линейный участок (область III) в температурной зависимости ρ (T) у большинства металлов простирается до температур, близких к точке плавления. Исключение из этого правила составляют ферромагнитные металлы, в которых имеет место дополнительное рассеяние электронов на нарушениях спинового порядка. Вблизи точки плавления, т.е. в области IV, в обычных металлах может наблюдаться некоторое отступление от линейной зависимости.

Относительное изменение удельного сопротивления при изменении температуры на один кельвин (градус) называют температурным коэффициентом удельного сопротивления:

Правило Маттиссена об аддитивности удельного сопротивления:

т е. полное удельное сопротивление металла есть сумма удельного сопротивления, обусловленного рассеянием электронов на тепловых колебаниях узлов кристаллической решетки, и остаточного удельного сопротивления, обусловленного рассеянием электронов на статических дефектах структуры.

Рис. 2. Температурные зависимости удельного сопротивления сплавов меди типа твердых растворов, иллюстрирующие правило Матиссена: 1 – чистая Cu; 2 – Cu – 1,03 ат. % In; 3 – Cu – 1,12 ат. % Ni

У металлов, не обладающих сверхпроводимостью, при низких температурах из-за наличия примесей наблюдается область 1 – область остаточного сопротивления, почти не зависящая от температуры (рис. 10.5). Остаточное сопротивление — r ост тем меньше, чем чище металл.

Рис. 10.5. Зависимость удельного сопротивления металла от температуры

Быстрый рост удельного сопротивления при низких температурах до температуры Дебая Q д может быть объяснен возбуждением новых частот тепловых колебаний решетки, при которых происходит рассеяние носителей заряда — область 2.

При Т > Q д , когда спектр колебаний возбужден полностью, увеличение амплитуды колебаний с ростом температуры приводит к линейному росту сопротивления примерно до Т пл — область 3. При нарушении периодичности структуры электрон испытывает рассеяние, приводящее к изменению направления движения, конечным длинам свободного пробега и проводимости металла. Энергия электронов проводимости в металлах составляет 3–15 эВ, что соответствует длинам волн 3–7 Å. Поэтому любые нарушения периодичности, обусловленные примесями, дефектами, поверхностью кристалла или тепловыми колебаниями атомов (фононами) вызывают рост удельного сопротивления металла.

Проведем качественный анализ температурной зависимости удельного сопротивления металлов. Электронный газ в металлах является вырожденным и основным механизмом рассеяния электронов в области высоких температур является рассеяние на фононах.

При понижения температуры до абсолютного нуля сопротивление нормальных металлов стремится к постоянному значению — остаточному сопротивлению. Исключением из этого правила являются сверхпроводящие металлы и сплавы, в которых сопротивление исчезает ниже некоторой критической температуры Тсв (температура перехода в сверхпроводящее состояние).

При увеличении температуры, отклонение удельного сопротивления от линейной зависимости у большинства металлов наступает вблизи температуры плавления Тпл . Некоторое отступление от линейной зависимости может наблюдаться у ферромагнитных металлов, в которых происходит дополнительное рассеяние электронов на нарушениях спинового порядка.

При достижении температуры плавления и переходе в жидкое состояние у большинства металлов наблюдается резкое увеличение удельного сопротивления и у некоторых его уменьшение. Если плавление металла или сплава сопровождается увеличением объема, то удельное сопротивление повышается в два–четыре раза (например, у ртути в 4 раза).

Читайте также:  Самый крутой робот пылесос

У металлов, объем которых при плавлении уменьшается, наоборот, происходит понижение удельного сопротивления (у галлия на 53%, у сурьмы –29% и у висмута –54%) . Подобная аномалия может быть объяснена возрастанием плотности и модуля сжимаемости при переходе этих металлов из твердого в жидкое состояние. У некоторых расплавленных (жидких) металлов удельное сопротивление с ростом температуры при постоянном объеме перестает расти, у других оно растет более медленно, чем в твердом состоянии. Такие аномалии, по-видимому, можно связать с явлениями разупорядочения решетки, которые неодинаково происходят в различных металлах при переходе их из одного агрегатного состояния в другое.

Важной характеристикой металлов является температурный коэффициент удельного электрического сопротивления, показывающий относительное изменение удельного сопротивления при изменении температуры на один Кельвин (градус)

ar— положительно, когда удельное сопротивление возрастает при повышении температуры. Очевидно, что величина ar также является функцией температуры. В области 3 линейной зависимости r ( T ) (см. рисунок 10.3) выполняется соотношение:

где r и ar— удельное сопротивление и температурный коэффициент удельного сопротивления при температуре T , а r — удельное сопротивление при температуре T . Экспериментальные данные показывают, что у большинства металлов ar при комнатной температуре примерно 0,004 К -1 .У ферромагнитных металлов значение ar несколько выше.

Остаточное удельное сопротивление металлов. Как говорилось выше, сопротивление нормальных металлов стремится к постоянному значению — остаточному сопротивлению, по мере снижения температуры до абсолютного нуля. У нормальных металлов (не сверхпроводников) остаточное сопротивление возникает из-за рассеяния электронов проводимости статическими дефектами

Общую чистоту и совершенство металлического проводника можно определять отношением сопротивлений r =R273/R4,2 K . Для стандартной меди чистоты 99,999 это отношение составляет 1000. Б óльших значений r можно достигнуть путем дополнительных зонных переплавок и приготовлением образцов в виде монокристаллов.

Обширный экспериментальный материал содержит многочисленные данные по измерению сопротивления в металлах, вызванному наличием в них примесей. Можно отметить следующие наиболее характерные изменения в металлах, вызываемые легированием. Во-первых, не считая фононных возмущений, примесь является локальным нарушением идеальности решетки совершенное во всех других отношениях. Во-вторых, легирование влияет на зонную структуру, сдвигая энергию Ферми и изменяя плотность состоянии и эффективную массу, т.е. параметры, частично определяющие идеальное сопротивление металла. В-третьих, легирование может менять упругие константы и, соответственно, колебательный спектр решетки, оказывая влияние на идеальное сопротивление.

Общее удельное сопротивление проводника при температурах выше 0К складывается из остаточного сопротивления r ост и удельного сопротивления, обусловленного рассеянием на тепловых колебаниях решетки — r Т

Это соотношение известно как правило Матиссена об аддитивности удельного сопротивления. Часто, однако, наблюдаются значительные отклонения от правила Матиссена , причем некоторые их этих отклонений могут говорить не в пользу применимости основных факторов, влияющих на сопротивление металлов при введении в них примесей. Однако второй и третий факторы, отмеченные в начале этого раздела, также дают заметный вклад. Но, все же более сильное воздействие на сопротивление разбавленных твердых растворов оказывает первый фактор.

Изменение остаточного сопротивления на 1 ат . % примеси для одновалентных металлов можно найти по правилу Линде, согласно которому

где a и b — константы, зависящие от природы металла и периода, который занимает в Периодической системе элементов примесный атом; ΔΖ — разность валентностей металла-растворителя и примесного атома. Значительный практический интерес представляют расчеты сопротивления, обусловленные вакансиями и внедренными атомами. Такие дефекты легко возникает при облучении образца частицами высоких энергий, например нейтронами из реактора или ионами из ускорителя.

К основным свойствам проводниковых материалов относятся:

  • Удельная проводимость или обратная ей величина – удельное сопротивление;
  • Температурный коэффициент удельного сопротивления;
  • Удельная теплопроводность;
  • Контактная разность потенциалов и термоэлектродвижущая сила;
  • Предел прочности при растяжении и относительное удлинение при разрыве.

Удельное сопротивление проводников. Величину, обратную удельной проводимости g называют удельным сопротивлением r и для проводника с постоянным поперечным сечением определяют по формуле:

(4.3)

Единицей удельного сопротивления в СИ является Ом×м, однако в практике чаще пользуются внесистемной единицей мкОм×м.

Следует отметить, что в отличие от диэлектриков диапазон удельных сопротивлений металлических проводников достаточно мал – от 0,016мкОм×м. для серебра и примерно до 10 мкОм×м. для железо-хромо-кобальто-алюминиевых сплавов, т.е. занимает всего три порядка.

Температурная зависимость удельного сопротивления металлических проводников. Как было показано ранее в идеально чистых металлах единственной причиной, которая ограничивает длину свободного пробега, являются тепловые колебания узлов кристаллической решетки (фононы). Удельное сопротивление металла, обусловленное этим фактором, обозначим как ρТ.. С ростом температуры возрастают амплитуды фононов и связанные с этим флюктуации периодического поля решетки. Это повышает рассеивание электронов, уменьшает длину свободного пробега и вызывает возрастание удельного сопротивления. Для упрощенной одномерной модели решетки длина свободного пробега электронов определяется как:

(4.4)

где λсв — длина свободного пробега;

Δa — амплитуда фононов;

N — концентрация атомов в металле.

Потенциальная энергия атома, отклоненного на Δa от узла решетки:

где Купр — коэффициент упругости связи.

Согласно классической статистике средняя энергия одномерного гармоничного осциллятора равняется КТ. Тогда:

где К — постоянная Больцмана.

Тогда из (4.5), (4.6) получим:

Если подставить (4.7) в (4.2) получим:

(4.8)

То есть с ростом температуры удельное сопротивление чистых металлов должно возрастать линейно. В действительности эта зависимость является более сложной (рисунок 4.2)

На участке 3 при комнатных температурах зависимость ρ = ¦(Т) линейна, как это видно из (4.8). То есть с ростом температуры возрастает амплитуда тепловых колебаний узлов кристаллической решетки, что уменьшает длину свободного пробега электронов.

На участке 4 вблизи температуры плавления имеет некоторая нелинейность, что объясняется другими механизмами рассеивания электронов.

При переходе металла из твердого состояния в жидкое (температура плавления Тпл) может иметь место как резкое возрастание удельного сопротивления (а), так и его уменьшение (б). Это связано с изменением структуры кристаллической решетки. Если при плавлении объем металла возрастает, что имеет место для большинства металлов, то расстояние между атомами тоже возрастает, металлическая связь уменьшается, а амплитуда фононов возрастает, что уменьшает длину свободного пробега электронов, следовательно, сопротивление металла возрастает. Для некоторых металлов (висмут, галлий) при плавлении объем металла уменьшается, что усиливает связи между атомами, амплитуда фононов уменьшается и удельное сопротивление тоже уменьшается.

Читайте также:  Сделано фрезером по дереву

На участке 5 металлы находятся в жидком состоянии и сохраняют кристаллическую решетку, поэтому зависимость удельного сопротивления от температуры поясняется аналогично участку 3.

На участке 2, ниже температуры Дебая (ТД) изменяется частота тепловых колебаний узлов кристаллической решетки, поэтому зависимость ρ = ¦(Т) нелинейна и подчиняется закону:

где n — изменяется от 1 до 5.

На участке 1 некоторые металлы имеют конечное сопротивление (rост) даже при температуре Т=0 К. Это объясняется наличием в металле статических дефектов решетки, прежде всего примесей. Это позволяет оценивать чистоту металлов на основании отношения:

где ρ300K , ρ4K — соответственно удельное сопротивление металла при 300 К и 4,2 К (температура кипения жидкого гелия). Чем меньше это отношение, тем чище металл.

У некоторых металлов при температуре ниже Тсв наблюдается резкое уменьшение удельного сопротивления до нуля. Такое явление называют сверхпроводимостью.

Таким образом, согласно (4.9) металлические проводники в обычных условиях имеют линейную зависимость удельного сопротивления от температуры.

Влияние примесей на удельное сопротивление металлических проводников.Как уже говорилось, причинами рассеяния электронов в металлах являются не только тепловые колебания узлов кристаллической решетки, но и наличие статических дефектов, которые, прежде всего связанные с примесями. Рассеивание на статических дефектах не зависит от температуры. Поэтому при абсолютном нуле сопротивление реальных металлов остается конечным. Из этого следует правило Маттиссена об аддитивности удельного сопротивления:

где ρпр — полное сопротивление металла с примесью;

ρт — сопротивление, обусловленное рассеянием электронов на фононах;

ρост — остаточное сопротивление, обусловленное рассеиванием электронов на статических дефектах решетки.

Наибольший вклад в остаточное сопротивление вносит рассеяние на примесных атомах, которые практически всегда имеются в металлах. Поэтому длина свободного пробега электронов в металлах с примесью состоит из:

где lТ, lД — длина свободного пробега электронов, ограниченная фононами и примесями, соответственно.

где Nd — концентрация атомов примеси;

Sd – эффективная плоскость рассеивания электронов атомами примеси.

Тогда удельное сопротивление проводника с примесью:

(4.13)

То есть наличие примесь увеличивает удельное сопротивление металла, но его зависимости от температуры остается линейной (рис. 4.3)

Различные примеси по-разному влияют на сопротивление металла. Это зависит от деформаций кристаллической решетки атомами примеси. Чем большая разность в размерах собственных и примесных атомов, тем больше остаточное сопротивление. То есть выполнится правило Линде:

где ост — изменение остаточного сопротивления при изменении примеси;

DZ — разность валентностей собственного атома и атома примеси;

Таким образом, на сопротивление металлов меньшее влияние оказывают примесные атомы металла, а большее – атомы металлоидов.

В технике очень широко используют металлические сплавы, имеющие значительную концентрацию атомов примеси, со структурой неупорядоченного твердого раствора. Статическое распределение атомов разного вида в узлах кристаллической решетки вызывает значительные флюктуации периодического поля кристалла, рассеивающего электроны. Но в неупорядоченных твердых растворах, преимущественно с добавкой примеси, изменяется только период решетки. Поэтому действителен закон Нордгейма:

де С — константа;

xА, xВ — атомные доли компонентов в сплаве.

То есть в бинарных твердых растворах А-В остаточное сопротивление возрастает, как при добавлении атомов металла В к металлу А, так и при добавленные атомов металла А к металлу В (рис. 4.4). Остаточное сопротивление достигает максимума при xА = xВ = 0,5.

Закон Нордгейма описывает изменение остаточного сопротивления для непрерывных неупорядоченных твердых растворов. Если сплав отжечь, то он может стать упорядоченным и, если при этом возникают интерметаллические соединения, которые имеют собственную кристаллическую решетку, то зависимость остаточного сопротивления разделяется на части, соответственно числу интерметаллических соединений. Таким образом, удельное сопротивление металлических сплавов всегда выше сопротивления чистых металлов. Это свойство используется для получения высокоомных проводниковых материалов.

Изменение удельного сопротивления при упругих деформациях объясняется изменением амплитуды колебания узлов кристаллической решетки металла. Увеличение амплитуды колебания узлов решетки металла приводит к уменьшению длины свободного пробега носителей заряда и удельное сопротивление возрастает. Пластическая деформация, как правило, повышает удельное сопротивление металлов вследствие искажения кристаллической решетки. При рекристаллизации путем термической обработки (отжига) удельное сопротивление может вновь снижено до первоначальных значений.

Температурный коэффициент удельного сопротивления.В диа­пазоне температуры, где зависимость r от t близка к линейной (рис. 4.2, участок 3) допустима линейно-кусочная аппроксимация этой зависимости, и величина удельного сопротивления в конце диапазона температу­ры t может быть подсчитана по формуле

где r—удельное сопротивление в начале диапазона.

Величину ar из выражения (4.) называют средним темпера­турным коэффициентом удельного сопротивления в данном диа­пазоне температуры:

, К -1 (4.17)

Дифференциальное выражение для ar имеет вид

, К -1 (4.18)

Значения ar чистых металлов в твердом состоянии близки друг к другу, и поэтому приближенно можно считать ar » 0,004 , К -1 .

Исключение составляют элементы, относящиеся к ферромагнетикам — железо, никель, кобальт, гадолиний, а также натрий, ка­лий, хром и др., однако и для них ar отличается от приведенной величины только в 1,5—2 раза.

Наличие примесей уменьшает значение αρ. У некоторых сплавов αρ. даже может приобретать небольшие отрицательные значения (рис.4.5). Это объясняют тем, что при более сложных составе и структурax по сравнению с чистыми металлами сплавы нельзя рассматривать как класси­ческие металлы, т. е. изменение проводи­мости их обусловливается не только из­менением подвижности носителей заряда но в некоторых случаях и частичным возрастанием концентрации носителей при повышении температуры. Сплав, у кото­рого уменьшение подвижности с увеличе­нием температуры компенсируется воз­растанием концентрации носителей заря­да, имеет нулевой температурный коэф­фициент удельного сопротивления.

Читайте также:  Строительство перекрытий своими руками

Это явление используется для изготовления термостабильных сплавов, например, константана, манганина ). Константан — сплав с 60% Ni и 40% Сu имеет большое сопротивление (

0,5 мкОм×м) и очень малый температурный коэффициент (меньше 10 -6 К -1 ), отсюда и его название.

Удельная теплопроводность металлов. Высокая теплопроводность металлов легко объясняется посредством передачи тепловой энергии атомов нагретого участка металла атомам холодного участка за счет переноса этой энергии коллективизированными электронами. Так как механизм электропроводности и теплопроводности в металлах обусловлен одними и теми же факторами: движением электронного газа и его плотностью, очевидно, что металлы с высокой электропроводностью являются также хорошими проводниками тепла, а диэлектрики обладают не только низкой электропроводностью, но и низкой теплопроводностью. Так, медь имеет удельную теплопроводность 406 Вт/К×м, серебро 453 Вт/К×м, алюминий 218 Вт/К×м, что значительно выше чем у диэлектриков. Удельная теплопроводность и электропроводность металлов связаны законом Видемана-Франца:

где lТ — удельная теплопроводность.

σ — удельная электропроводность.

Поскольку на участке комнатных температур удельная электропроводность падает пропорционально температуре, то согласно (4.19), удельная теплопроводность металлов не должна зависеть от температуры. Это следствие из закона Видемана-Франца выполняется для большинства металлов. Это свойство применяют в технике, при использовании металлов как радиаторов для охлаждения мощных полупроводниковых приборов.

Для этой цели необходимо использовать металлы с большим значением удельной теплопроводности. Чаще всего, это сплавы на основе алюминия (силумин), которые имеют хорошие тепловые, механические и антикоррозийные свойства. Медь нельзя использовать вследствие её плохой коррозионной стойкости, а серебро — вследствие высокой стоимости.

Контактные явления и термоэлектродвижущая сила (термо-э.д.с.)

При соприкосновении двух разных металлов, между ними возникает контактная разность потенциалов. Согласно квантовой теории причиной этого является различная энергия Ферми соприкасающихся металлов. Пусть в изолированном состоянии электронный газ в металлах А и В имеет энергию Ферми WF A и WF B , отсчитываемую от дна зоны проводимости (рис.4.6).

Термодинамическая работа выхода электронов из металла равняется, соответственно, cА и cВ. Поскольку кинетическая энергия электронов, которые находятся на уровне Ферми в разных металлах различна, то при контакте материалов возникает значительный переход электронов из металла В с большим значением энергии Ферми в металл, где эта энергия меньше. Например, из металла В в металл А. Вследствие этого металл В заряжается положительно, а металл А — отрицательно. Между ними возникает разность потенциалов, которая блокирует дальнейший переход носителей заряда. Равновесие наступит, если:

где UK — контактная разность потенциалов.

Наличие контактного поля обеспечивает равновесие потоков электронов из одного металла в другой. Равновесие вследствие большой скорости теплового движения устанавливается очень быстро (приблизительно за 10 -16 с). Двойной слой d, который возникает при этом в области контакта, будет очень тонким (приблизительно равным периоду решетки), поэтому он не влияет на прохождение электрического тока через контакт. Поскольку энергия Ферми в металлах значительна, то контактная разность потенциалов достигает несколько вольт.

Термоэлемент, который построен из двух различных металлических проводников с замкнутой цепью, называют термопарой (рис.4.7).

Вольтметр в такой цепи будет показывать разность потенциалов, которую называют термоэлектродвижущей силой (термо-э.д.с.). Термо-э.д.с. равняется:

где aT — относительная удельная термо-э.д.с.

Значение aT зависит от природы материалов и температуры и включает в себя три составляющих. Первая обусловлена температурной зависимостью контактной разности потенциалов, поскольку с ростом температуры уровень Ферми в металлах незначительно, но смещается.

Вторая составляющая обусловлена диффузией носителей заряда от горячих спаев к холодным. Поскольку существует градиент температуры от контакта к контакту, то возникает диффузия электронов от горячего контакта к холодному, что дает некоторый вклад в возникающую разность потенциалов.

Третья составляющая возникает вследствие захвата электронов квантами тепловой энергии. Их поток тоже передвигается к холодному контакту. Значение aT приблизительно равняется нескольким мкВ/К.

Термопары часто используют для измерения температуры. Если температуру холодного контакта поддерживать 0 О С, то вольтметр будет показывать напряжение пропорциональное температуре горячего контакта. Достоинством термопар является высокая линейность, возможность измерения температуры в широком интервале температур, независимость значения термо-э.д.с. от длины проводников.

Вследствие того, что значение aT зависит от состава материала и незначительно от температуры, термопары градуируют, используя точки плавления металлов: свинца, олова, серебра и других.

Наиболее распространенными термопарами являются:

· Хромелькопель (типа ХК). Она позволяет измерять температуры до 600 О С и имеет при этой температуре термо-э.д.с. приблизительно 50 мВ.

· Хромель-алюмель (типа ХА). Она используется к температурам 1000 О С и имеет при этой температуре термо-э.д.с. приблизительно 40 мВ.

· Медь-константан. Ее используют при низких температурах до 350 О С. При этой температуре термо-э.д.с. достигает 15 мВ.

· Платинородий-платина (типа ПП или ППР). Ее применяют до температуры 71600 О С. Термо-э.д.с. у этой термопары невелика (приблизительно 14 мВ при 1600 О С). Но она позволяет обеспечить наиболее точные и стабильные измерения температуры.

Однако явление термо-э.д.с. имеет и отрицательные стороны. В реальных условиях исключить градиенты температур практически невозможно. Поэтому, если контактируют различные металлы, то возможно возникновение паразитной термо-э.д.с. Для устранения этого в цепях (прежде всего электроизмерительных устройств), надо подбирать контактирующие металлы с малыми значениями термо-э.д.с. Такой парой, например, является медь-манганин.

Не нашли то, что искали? Воспользуйтесь поиском:

Понравилась статья? Поделиться с друзьями:
ТурбоЗайм
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.

Adblock detector