Температурно усадочные швы снип

СНиП 2.03.04-84
________________
Зарегистрирован Росстандартом в качестве СП 27.13330.2010. —
Примечание изготовителя базы данных.

СТРОИТЕЛЬНЫЕ НОРМЫ И ПРАВИЛА

БЕТОННЫЕ И ЖЕЛЕЗОБЕТОННЫЕ КОНСТРУКЦИИ, ПРЕДНАЗНАЧЕННЫЕ ДЛЯ РАБОТЫ В УСЛОВИЯХ ВОЗДЕЙСТВИЯ ПОВЫШЕННЫХ И ВЫСОКИХ ТЕМПЕРАТУР

____________________________________________________________________
Текст Сравнения СНиП 2.03.04-84 с СП 27.13330.2011см. по ссылке.
— Примечание изготовителя базы данных.
____________________________________________________________________

РАЗРАБОТАНЫ НИИЖБ Госстроя СССР (д-р техн. наук, проф. А. Ф. Милованов руководитель темы; кандидаты техн. наук В. Н. Горячев, В. М. Милонов, В. Н. Сямойленко) с участием ВНИПИ Теплопроект Минмонтажспецстроя СССР (В. А. Тарасова), Макеевского ИСИ Минвуза Украинской ССР (канд. техн. наук А. П. Кричевский), Харьковского Промстройннипроекта Госстроя СССР (кандидаты техн. наук И. Н. Заславский, С. Л. Фомин).

ВНЕСЕНЫ НИИЖБ Госстроя СССР.

ПОДГОТОВЛЕНЫ К УТВЕРЖДЕНИЮ Главтехнормированием Госстроя СССР (В. М. Скубко).

С введением в действие СНиП 2.03.04-84 "Бетонные и железобетонные конструкции, предназначенные для работы в условиях воздействия повышенных и высоких температур" с 1 января 1986 г. утрачивает силу "Инструкция по проектированию бетонных и железобетонных конструкций, предназначенных для работы в условиях воздействия повышенных и высоких температур" (СН 482-76).

При пользовании нормативным документом следует учитывать утвержденные изменения строительных норм и правил и государственных стандартов, публикуемые в журнале Бюллетень строительной техники Госстроя СССР и информационном указателе Государственные стандарты СССР Госстандарта.

Настоящие нормы и правила распространяются на проектирование бетонных и железобетонных конструкций, предназначенных для работы в условиях систематического воздействия повышенных (от 50 до 200°С включительно) и высоких (свыше 200°С) технологических температур (далее — воздействия температур).

Нормы устанавливают требования по проектированию указанных конструкций, изготовляемых из конструкционного тяжелого бетона средней плотности от 2200 до 2500 включительно (далее — обычный бетон) и из жаростойкого бетона плотной структуры средней плотности 900 и более.

Требования настоящих норм не распространяются на конструкции из жаростойкого бетона ячеистой структуры.

Проектировать железобетонные дымовые трубы, резервуары и фундаменты доменных печей, работающие при воздействии температуры свыше 50°С, следует с учетом дополнительных требований, предъявляемых к этим сооружениям соответствующими нормативными документами.

Основные буквенные обозначения, принятые в настоящих нормах согласно СТ СЭВ 1565-79, приведены в справочном приложении 1.

1. ОСНОВНЫЕ ПОЛОЖЕНИЯ

1. ОСНОВНЫЕ ПОЛОЖЕНИЯ

ОБЩИЕ УКАЗАНИЯ

1.1. Бетонные и железобетонные конструкции, предназначенные для работы в условиях воздействия повышенных температур, следует предусматривать, как правило, из обычного бетона.

Фундаменты, которые при эксплуатации постоянно подвергаются воздействию температуры до 250°С включительно, допускается принимать из обычного бетона.

Бетонные и железобетонные конструкции, предназначенные для работы в условиях воздействия высоких температур, следует предусматривать из жаростойкого бетона.

Несущие элементы конструкций тепловых агрегатов, выполняемые из жаростойкого бетона, сечение которых может нагреваться до температуры выше 1000°С, допускается принимать только после их опытной проверки.

Жаростойкие бетоны в элементах конструкций тепловых агрегатов следует применять в соответствии с рекомендуемым приложением 2.

Классы жаростойкого бетона по предельно допустимой температуре применения в соответствии с ГОСТ 20910-82* в зависимости от вида вяжущего, заполнителей, тонкомолотых добавок и отвердителя приведены в табл. 9.
__________________
* На территории Российской Федерации документ не действует. Действует ГОСТ 20910-90, здесь и далее по тексту. — Примечание изготовителя базы данных.

1.2. Для конструкций, работающих под воздействием температуры выше 50°С в условиях периодического увлажнения паром, технической водой и конденсатом, необходимо соблюдать требования пп. 1.8, 2.4, 2.6 — 2.8, 2.11 и 5.7. При невозможности обеспечения указанных требований расчет таких конструкций допускается производить только на воздействие температуры и нагрузки без учета периодического увлажнения. При этом в расчете сечения не должны учитываться крайние слои бетона толщиной 20 мм с каждой стороны, подвергающиеся замачиванию в течение 7 ч, и толщиной 50 мм при длительности замачивания бетона более 7 ч или должна предусматриваться защита поверхности бетона от периодического замачивания.

Окрашенная поверхность бетона или гидроизоляционные покрытия этих конструкций должны быть светлых тонов.

1.3. Циклический нагрев — длительный температурный режим, при котором в процессе эксплуатации конструкция периодически подвергается повторяющемуся нагреву с колебаниями температуры более 30 % расчетной величины при длительности циклов от 3 ч до 30 дней.

Постоянный нагрев — длительный температурный режим, при котором в процессе эксплуатации конструкция подвергается нагреву с колебаниями температуры до 30 % расчетной величины.

1.4. При проектировании конструкций из жаростойких бетонов по ГОСТ 20910-82 необходимо учитывать дополнительные требования к исходным материалам для жаростойких бетонов, подбору их состава и технологии приготовления, а также особенности производства работ по требованиям СН 156-79.

ОСНОВНЫЕ РАСЧЕТНЫЕ ТРЕБОВАНИЯ

1.5. Бетонные и железобетонные конструкции, работающие в условиях воздействия повышенных и высоких температур, следует рассчитывать на основе положений СНиП 2.03.01-84 с учетом дополнительных требований, изложенных в настоящих нормах и правилах.

При расчете бетонных и железобетонных конструкций необходимо учитывать изменения механических и упругопластических свойств бетона и арматуры в зависимости от температуры воздействия. При этом усилия, деформации, образование, раскрытие и закрытие трещин определяют от воздействия нагрузки (включая собственный вес) и температуры.

Расчетные схемы и основные предпосылки для расчете бетонных и железобетонных конструкций должны устанавливаться в соответствии с условиями их действительной работы в предельном состоянии с учетом в необходимых случаях пластических свойств бетона и арматуры, наличия трещин в растянутом бетоне, а также влияния усадки и ползучести бетона как при нормальной температуре, так и при воздействии повышенных и высоких температур.

1.6. Расчет конструкций, работающих в условиях воздействия повышенных и высоких температур, должен производиться на все возможные неблагоприятные сочетания нагрузок от собственного веса, внешней нагрузки и температуры с учетом длительности их действия и в случав необходимости — остывания.

Расчет конструкций с учетом воздействия повышенных и высоких температур необходимо производить для следующих основных расчетных стадий работы:

кратковременный нагрев — первый разогрев конструкции до расчетной температуры;

длительный нагрев — воздействие расчетной температуры в период эксплуатации.

Расчет статически определимых конструкций по предельным состояниям первой и второй групп (за исключением расчета по образованию трещин) следует вести только для стадии длительного нагрева. Расчет по образованию трещин необходимо производить для стадий кратковременного и длительного нагрева с учетом усилий, возникающих от нелинейного распределения температуры бетона по высоте сечения элемента.

Расчет статически неопределимых конструкций и их элементов по предельным состояниям первой и второй групп должен производиться:

а) на кратковременный нагрев конструкции по режиму согласно СНиП III-15-76*, когда возникают наибольшие усилия от воздействия температуры (см. п. 1.10). При этом жесткость элементов в конструкции определяется по указаниям пп. 4.17 и 4.18 как от кратковременного действия всех нагрузок и в зависимости от скорости нагрева;
_____________________
* На территории Российской Федерации документ не действует. Действуют СНиП 3.03.01-87. — Примечание изготовителя базы данных.

Читайте также:  Спирея дугласа посадка и уход фото

б) на длительный нагрев — воздействие на конструкцию расчетной температуры в период эксплуатации, когда происходит снижение прочности и жесткости элементов в результате воздействия длительного нагрева и нагрузки.

При этом жесткость элементов определяется по указаниям пп. 4.17 и 4.18 как от длительного воздействия всех нагрузок.

Расчетная технологическая температура принимается равной температуре среды цеха или рабочего пространства теплового агрегата, указанной в задании на проектирование.

Расчетные усилия и деформации от кратковременного и длительного нагревов определяются с учетом коэффициента надежности по температуре по указаниям п. 1.27.

1.7. Величины нагрузок и воздействий, значения коэффициентов надежности, коэффициентов сочетаний, а также подразделение нагрузок на постоянные и временные длительные, кратковременные, особые следует принимать в соответствии с требованиями СНиП II-6-74 с учетом дополнительных указаний СНиП 2.03.01-84.

Нагрузки и воздействия температуры, учитываемые при расчете конструкции по предельным состояниям первой и второй групп, следует принимать по табл. 1 и 2.

При расчете по прочности в необходимых случаях должны учитываться особые нагрузки с коэффициентами надежности по нагрузке , принимаемыми по соответствующим нормативным документам. При этом усилия, вызванные действием температуры, не учитываются.

1.8. К трещиностойкости конструкций (или их частей) должны предъявляться требования СНиП 2.03.01-84 с учетом дополнительных указаний настоящего пункта.

Категории требований к трещиностойкости железобетонных конструкций в зависимости от условий их работы, вида арматуры, а также величины предельно допустимой ширины раскрытия трещин с учетом воздействия температуры на элементы, эксплуатируемые в условиях неагрессивной среды, для обеспечения сохранности арматуры приведены в табл. 3.

1.9. Определение усилий в статически неопределимых конструкциях от внешней нагрузки, собственного веса и воздействия повышенных и высоких температур производят по правилам строительной механики методом последовательных приближений. При этом жесткость элементов определяют с учетом неупругих деформаций и наличия трещин в бетоне от одновременного действия внешней нагрузки, собственного веса и температуры.

1.10. При кратковременном нагреве усилия от воздействия температуры в элементах статически неопределимых конструкций должны определяться в зависимости от состава бетона (см. табл. 9) и температуры нагрева, вызывающей наибольшие усилия:

а) при нагреве бетона № 1 свыше 50 до 250°С — по расчетной температуре;

б) при нагреве бетонов № 2-11, 23 и 24 свыше 200 до 500°С по расчетной температуре; при нагреве свыше 500°С — при 500°С;

в) при нагреве бетонов № 12-21, 29 и 30 свыше 200 до 400°С — по расчетной температуре, при нагреве свыше 400°С — при 400°С.

Для конструкций, находящихся на наружном воздухе, расчет наибольших усилий от воздействия температур выполняют по расчетной температуре воздуха по требованию п. 1.40.

Статическая схема конструкции

и расчетная стадия работы

Нагрузки и коэффициенты надежности по нагрузке

, температурные воздействия
и коэффициенты надежности по температуре ,
принимаемые при расчете

В монолитных железобетонных плитах следует предусматривать их разрезку постоянными и временными температурно-усадочными швами, расстояния между которыми назначают в зависимости от климатических условий, конструктивных особенностей сооружения, последовательности производства работ и т.п. (см. п. 10.2.3 СП63.13330.2012 Бетонные и железобетонные конструкции.

Расстояние между температурно-усадочными швами следует принимать по таблице (см.таб.3 Пособие по проектированию бетонных и железобетонных конструкций из тяжелых и легких бетонов без предварительного напряжения арматуры (к СНиП 2.03.01-84)

Наибольшие расстояния, м,

между температурно-усадочными швами, допускаемые

без расчета, для конструкций, находящихся

Если фундаменты не могут быть разделены на участки длиной менее 40 м, то необходимо предусматривать временные усадочные швы шириной от 0,7 до 1,2 м — рабочий шов бетонирования. В этих случаях из массива фундаментов с обеих сторон временного шва (в уровне подошвы и верхней поверхности фундамента) должна быть выпущена рабочая арматура, которую, спустя 3-4 недели после бетонирования фундаментов, необходимо соединить сваркой с накладными стержнями, а шов заполнить бетоном той же марки (см. п.6.17 Руководство по проектированию плитных фундаментов каркасныхзданий и сооружений башенного типа).

Поверхность рабочих швов, устраиваемых при укладке бетонной смеси с перерывами, должна быть перпендикулярна оси бетонируемых колонн и балок, поверхности плит и стен. Возобновление бетонирования допускается производить по достижении бетоном прочности не менее 1,5 МПа (см. п.5.3.12 СП70.13330.2012 Несущие и ограждающие конструкции).

Рабочим швом называют плоскость стыка между затвердевшим и новым (свежеуложенным) бетоном, образованнуюиз-заперерыва в бетонировании. Рабочий шов образуется в том случае, когда последующие слои бетонной смеси укладывают на полностью затвердевшие предыдущие слои. Обычно это происходит тогда, когда перерыв в бетонировании составляет5—7ч и более.

Величина сцепления нового бетона со старым значительно ниже, чем монолита. Поэтому рабочий шов отличается от монолитного бетона не только по прочности, но и по другим характеристикам: он менее морозостоек, водопроницаем и т. д. Для уменьшения отрицательного влияния рабочих швов на конструкцию необходимо: во-первых,размещать их в местах, наименее опасных для прочности конструкций, и так, чтобы они не ухудшали внешний вид сооружения;во-вторых,допускаются только конструктивно оформленные рабочие швы;в-третьих,такие швы перед укладкой свежего бетона нужно соответствующим образом обработать. Конструктивное оформление рабочих швов зависит от вида конструкций, их размеров и армирования. Для образования швов в плитах устанавливают доски, плоские щиты или щиты с уступом. Уступ делают для удлинения поперечной линии шва, что увеличивает его прочность и водонепроницаемость.

Перед укладкой свежего бетона с поверхности шва удаляют рыхлые слои бетона и цементную корку, очищают его от грязи и мусора. Если поверхность затвердевшего бетона шва гладкая, ее насекают зубилами, скарпелью или с помощью отбойного молотка с последующей промывкой и продувкой сжатым воздухом. Непосредственно перед укладкой нового бетона поверхность шва следует увлажнить, а также уложить слой жирного раствора на том же цементе, что и основной бетон. Все это способствует обеспечению высокой прочности и водонепроницаемости шва.

Холодный шов при бетонировании
Монолитный бетон и железобетон, как правило, экономичнее сборного в подземных частях зданий и сооружений, в фундаментах под технологическое оборудование, в конструкциях массивных стен, в дорожном и гидротехническом строительстве. Широкую сферу эффективного применения он находит также в сборно-монолитных конструкциях.
Монолитный бетон и железобетон, по сравнению со сборным способом строительства, обладает неоспоримыми преимуществами, обеспечивая в конструкциях эффективную диссипацию колебательной энергии при ветровых и сейсмических нагрузках, высокий момент сопротивления статическим и динамическим нагрузкам и низкую деформативность.
В СНиП 3.03.01-87 ”Несущие и ограждающие конструкции” при монолитном бетонировании предусматривается укладка бетонных смесей двумя принципиально различными способами:
-укладка без перерывов в бетонировании до начала схватывания предыдущего слоя бетона, то есть без образования рабочего шва;
-укладка с перерывами после схватывания уложенного ранее слоя бетона с образованием рабочего шва.
Непрерывное бетонирование предпочтительнее, так как этот способ обеспечивает наивысшее качество монолитных конструкций, однако по технологическим и организационным причинам это не всегда возможно, поэтому, как правило, проектом предусматриваются рабочие швы.
Рабочие швы также называют строительными швами, швами бетонирования или ”холодными швами”. Образование рабочих швов вызвано остановками бетонирования и определяется рядом причин:
-организационных: окончание рабочей смены, ремонт оборудования, нехватка материалов, несовершенную общую организацию работ, технические возможности используемых машин и механизмов;
-технологических: монтаж вышележащих арматуры, лесов и опалубки и ограничение нагрузок на конструкции;
-конструктивных: обеспечение направленных деформаций отдельных участков конструкций и сооружений в целом.
Как правило, возводимые монолитные бетонные и железобетонные конструкции бетонируются отдельными сопрягаемыми между собой участками — блоками (картами) бетонирования.
Рабочий шов бетона образуется, когда каждый последующий слой бетонной смеси укладывают на затвердевший (схватившийся) предыдущий слой бетона. Отличительной особенностью рабочего шва является то, что сцепление нового бетона с уже затвердевшим бетоном значительно ниже, чем прочность монолитного бетона без рабочего шва, вследствие чего снижаются морозостойкость, водонепроницаемость и ухудшается внешний вид конструкций. Это объясняется тем, что ”холодные швы” являются границей, на которой происходит превращение усадочных напряжений сжатия в напряжения растяжения, и поэтому зона шва становится предварительно напряженной. Как известно, бетон хорошо работает на сжатие, менее стоек к изгибающим нагрузкам и значительно хуже противостоит напряжениям растяжения. В результате релаксации напряжений растяжения, реализующихся в виде микротрещин, зона стыка имеет меньшую плотность и прочность, по сравнению с монолитным бетоном и при равных растягивающих напряжениях, трещины прежде всего открываются именно по швам.
В соответствии с СНиП 3.03.01-87 перед бетонированием поверхности рабочих швов должны быть очищены от грязи, масел, снега, льда и цементной пленки. Очистка поверхности рабочих швов от цементной пленки проводится для устранения возможности образования ”холодных швов”.
Годовой объем производства монолитного бетона и железобетона в России составляет 25-30 млн. м³. При допущении, что половина конструкций изготавливается способом послойной укладки с толщиной слоя ориентировочно 50 см за проход, общая площадь рабочих швов требующих подготовки поверхности составляет 12-15 млн. м²/год.
Цементная пленка
Основным источником образования цементной пленки является водный раствор гидроксида кальция Са(ОН)2, который выходит на поверхность бетона, реагирует с углекислотой воздуха СО2 и образует нерастворимую в воде пленку карбоната кальция СаСО3 (по химсоставу – известняком). Другим источником являются соли щелочных металлов, присутствующие в цементе в свободном виде; добавляемые в цемент цеолитовые туфы и зола-унос (зольные микросферы) тепловых электростанций, выделяющие щелочи; песок, щебень и гравий, содержащие галоидные соединения; ускорители твердения, противоморозные добавки, пластификаторы и другие добавки. При затворении цемента водой водорастворимые щелочи образуют растворы и химически связываются с силикатами и алюминатами цемента. Затем, при контакте с углекислотой воздуха щелочи карбонизируются с образованием нерастворимой в воде плотной цементной пленки.
Еще одним источником солей является вода затворения, если она по составу примесей не отвечает требованиям ГОСТ 23732.
Химически цементную пленку можно представить как смесь растворимых и нерастворимых в воде карбонатов, сульфатов, нитратов и хлоридов.
В поверхностном слое вытесненной из бетонной смеси воды, несмотря на полное превращение всего вяжущего в кристаллизующийся гидрат, не происходит образования плотной и прочной кристаллической структуры.
Физически цементная пленка, в отличие от тела цементного камня, представляет собой не прочную кристаллическую структуру, а рыхлую непрочную конденсационную структуру, заполняющую поровое пространство бетона на некоторую глубину.
При послойной укладке бетонной смеси на рабочий шов имеющий на поверхности цементную пленку, вместо ожидаемой по проекту монолитной, образуется трехслойная конструкция: ”бетон – цементная пленка – бетон”.
В этой конструкции с точки зрения прочности слабым местом является именно цементная пленка. Очевидно, что при пороговом напряжении, значение которого значительно ниже расчетного, разрушение бетонной конструкции произойдет именно по этой границе раздела. Из теории прочности известно, что для наиболее эффективного перераспределения напряжений и наиболее полной диссипации энергии при ветровых или сейсмических нагрузках конструкция должна обладать возможно полной монолитностью. В случае ”трехслойной” конструкции здание возможно рассматривать не как монолитную конструкцию, а как сборную, состоящую из ”этажей”, каждый из которых самостоятельно воспринимает механическую нагрузку и работает независимо от других.
Традиционные способы очистки рабочих швов
СНиП 3.03.01-87 определены способы очистки и установлены требования по прочности поверхности бетона при очистке от цементной пленки: механическая обработка металлической щеткой — не менее 1,5 МПа; механическое фрезерование — не менее 5 МПа; гидропескоструйная обработка — не менее 5 МПа; промывка водой и сушка сжатым воздухом — не менее 0,3 МПа. Рекомендации по величине допустимого временного интервала перекрытия слоев бетона до образования рабочего шва противоречивы и находятся в диапазоне 2-4,5 ч. Во всех случаях обязательной являтся очистка поверхности ранее уложенного бетона от пыли, грязи, масла и строительного мусора. Для предотвращения обезвоживания укладываемой смеси бетонное основание увлажняют. При перерыве в бетонировании качество верхнего (контактного) слоя бетона ухудшается во времени из-за водоотделения, наиболее интенсивно протекающего в первые 1-1,5 ч. И все же, прочность стыка при перерывах в бетонировании, составляющем до 5 и даже более часов, существенно выше, чем прочность стыка с полностью затвердевшим бетоном даже при тщательной подготовке его поверхности. При перерывах в работе дальнейшая укладка смеси может проводиться только после набора ранее уложенным бетоном прочности не менее 1,5 МПа, что гарантирует отсутствие нарушения его структуры. Рассмотрим достоинства и недостатки существующих способов очистки и подготовки поверхности рабочих швов:
1. Механическое фрезерование и механическая очистка поверхности бетона от цементной пленки производится металлическими щетками или метлами с проволочной щетиной. Сухая механическая очистка поверхности затвердевшего бетона возможна только после набора им определенной прочности, во избежании повреждения низлежащих слоев. Однако с набором бетоном прочности очистка поверхности рабочих швов затрудняется.
Применение приводных металлических щеток и машинного фрезерования оправдано только при наборе бетоном прочности не более 2-3 МПа. При большей прочности бетона эффективность обработки снижается из-за значительного увеличения продолжительности очистки и повышенного износа щеток. Достоинством механических способов очистки является применение их там, где невозможно использование пыльных и мокрых и дорогостоящих процессов пескоструйной и гидропескоструйной обработки. Очень эффектина насечка поверхности, увеличивающая площадь передачи напряжений. Однако, применение для снятия пленки и последующей насечки инструментов ударного действия (перфораторов, отбойных молотков) должно быть исключено, ввиду возможного повреждения верхнего слоя бетона стыкуемой поверхности. К недостаткам механических способов подготовки поверхности бетона можно отнести следующие:
-возможность очистки только после набора бетоном прочности 1,5 МПа приводит к длительным технологическим перерывам;
-удаляется только верхний слой цементной пленки и не открываются поры бетона;
-возможно возникновение и релаксация внутренних напряжений в виде микротрещин;
-пылеобразование требует очистки промышленным пылесосом;
-высокая стоимость оборудования и трудоемкость;
-сложность организации контроля качества работ.
2. При гидропескоструйной обработке удаляется цементная пленка и только в поверхностном слое открываются поры бетона. Процесс обладает следующими недостатками:
-отсутствие возможности проведения очистки до набора бетоном прочности 5 МПа и необходимость в длительных технологических перерывах для набора бетоном необходимой прочности;
-возникновение внутренних напряжений в результате ударного воздействия рабочей струи и их релаксация приводящая к микротрещинам;
-высокая стоимость компрессоров высокого и сверхвысокого давления, абразивоструйных комплексов и установок фильтрации и кондиционирования воздуха;
-ограничения в применении при внутренних работах и при действующем производстве.
3. Наиболее просто производить удаление цементной пленки с поверхности рабочего шва водяной или водовоздушной струей под давлением 0,5-0,7 МПа.
Достоинством этого способа является то, что очистку можно производить почти сразу же после укладки слоя при прочности бетона 0,3 МПа, то есть когда уже образовалась достаточно прочная структура бетона и нет опасности нарушения сцепления крупного заполнителя с растворной частью. При такой прочности по поверхности бетона можно ходить, хотя остаются следы от обуви и поверхность поддается продавливанию при нажиме пальцем с некоторым усилием. Время достижения этой прочности в зависимости от свойств бетонной смеси, влажности и температуры окружающего воздуха и находится в пределах от 4 до 18 ч.
К недостаткам очистки водяной или водовоздушной струей относятся:
-на практике невозможно применение этого способа очистки рабочих швов при отрицательных температурах окружающего воздуха и на вертикальных стыкуемых поверхностей, длительное время закрытых опалубкой;
-на поверхности остается нерастворимая в воде цементная пленка;
-содержащееся в сжатом воздухе компрессорное масло образует на поверхности антиадгезионную пленку.
4. Процесс химической очистки соляной кислотой является не эффективным и технически неоправданным.
В минералогии качественной реакцией на отличие кальцита (карбоната кальция) от других породообразующих минералов является бурное разложение в холодной соляной кислоте. Предложение по снятию цементной пленки, содержащей карбонаты, с помощью соляной кислоты не следует рекомендовать из-за опасности снижения долговечности бетона.
Именно этим объясняется мощный отрицательный эффект от ее применения:
-наблюдается поверхностное растворение и разрушение не только цементной пленки, но и цементного камня, что служит причиной разрушения шва между старым и новым бетоном в процессе эксплуатации;
-незначительно увеличивается прочность сцепления, по сравнению с необработанной поверхностью;
-требуется дополнительная операция нейтрализации кислоты щелочью (едким натром) с промывкой водой;
-потеря поверхностной прочности приводит к пылению бетона и требует дополнительного обязательного обеспыливания перед нанесением растворной смеси.
5. Для увеличения временного интервала между укладкой бетонной смеси и удалением цементной пленки и поверхностного слоя бетона, а также облегчения процесса очистки рабочего шва используют замедлители твердения, например, пластификатор бетонной смеси – сульфитно-дрожжевую бражку (СДБ). Раствор СДБ 15-20%-ной концентрации наносится на поверхность уложенного бетона краскораспылителем. Удаление ослабленного поверхностного слоя может проводиться как приводными щетками, так и под напором струи воды до полного отделения незатвердевшего слоя и удаления желтых пятен от СДБ.
К недостаткам этого способа можно отнести:
-обработку поверхности можно начинать не раньше, чем через сутки после укладки бетона; верхний предел времени обработки зависит от температуры воздуха и колеблется от двух до четырех суток;
-необходимо очень внимательно следить за тем, чтобы не снизить прочность основного бетона;
-применение замедлителей твердения недопустимо при проведении бетонирования не только в зимний, но даже в весенне-осенний период.

Читайте также:  Сделать откосы на окна пвх

Главное меню

СНиП II-22-81(1995) КАМЕННЫЕ И АРМОКАМЕННЫЕ КОНСТРУКЦИИ
Автор Редактор контента
18.08.2008 г.

ДЕФОРМАЦИОННЫЕ ШВЫ

6.78. Температурно-усадочные швы в стенах каменных зданий должны устраиваться в местах возможной концентрации температурных и усадочных деформаций, которые могут вызвать недопустимые по условиям эксплуатации разрывы кладки, трещины, перекосы и сдвиги кладки по швам (по концам протяженных армированных и стальных включений, а также в местах значительного ослабления стен отверстиями или проемами). Расстояния между температурно-усадочными швами должны устанавливаться расчетом.

6.79. Максимальные расстояния между температурно-усадочными швами, которые допускается принимать для неармированных наружных стен без расчета:

а) для надземных каменных и крупноблочных стен отапливаемых зданий при длине армированных бетонных и стальных включений (перемычки, балки и т.п.) не более 3,5 м и ширине простенков не менее 0,8 м — по табл. 32; при длине включений более 3,5 м участки кладки по концам включений должны проверяться расчетом по прочности и раскрытию трещин;

б) то же, для стен из бутобетона — по табл. 32 как для кладки из бетонных камней на растворах марки 50 с коэффициентом 0,5;

в) то же, для многослойных стен — по табл. 32 для материала основного конструктивного слоя стен;

г) для стен неотапливаемых каменных зданий и сооружений для условий, указанных в п. «а», — по табл. 32 с умножением на коэффициенты:

для закрытых зданий и сооружений — 0,7

для открытых сооружений — 0,6

д) для каменных и крупноблочных стен подземных сооружений и фундаментов зданий, расположенных в зоне сезонного промерзания грунта, — по табл. 32 с увеличением в два раза; для стен, расположенных ниже границы сезонного промерзания грунта, а также в зоне вечной мерзлоты — без ограничения длины.

Расстояние между температурными швами, м, при кладке

Средняя температура наружного воздуха наиболее холодной пятидневки

из глиняного кирпича, керамических и природных камней, крупных блоков из бетона или глиняного кирпича

из силикатного кирпича, бетонных камней, крупных блоков из силикатного бетона и силикатного кирпича

Понравилась статья? Поделиться с друзьями:
ТурбоЗайм
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.

Adblock detector