Теплоаккумуляторы на расплавах солей

Аккумулирование тепловой энергии (АТЭ) происходит благодаря широкому спектру технологий. В зависимости от конкретной технологии, оно дает возможность хранить и использовать избыточную тепловую энергию в течение нескольких часов, дней или даже нескольких месяцев в масштабах, характерных для использования отдельными пользователями, строительства (в том числе – крупномасштабного), использования в рамках округа, города или региона. Примеры использования – балансировка спроса на энергию между дневным и ночным временем, хранение летнего тепла для отопления зимой или зимнего холодного воздуха для кондиционирования воздуха. Среди средств хранения – емкости для хранения воды или льда, массы материнской почвы или коренная порода, связанная с теплообменниками с помощью буровых скважин, глубоколежащие водоносные горизонты, находящиеся между непроницаемыми слоями; мелкие ямы, заполненные гравием и водой и изолированные в верхней части; также средствами хранения могут быть эвтектические растворы и солевые грелки.

Другими источниками тепловой энергии для хранения могут быть тепло или холод, произведенный тепловыми насосами во внепиковые периоды производства дешевой электроэнергии, практика, известная как ограничение пика нагрузки; тепло от теплоэлектроцентралей; тепло, произведенное возобновляемыми источниками энергии, превышающими потребности электросетей, и бросовое тепло от промышленных процессов. Как сезонное, так и кратковременное хранение тепла считается важным средством для дешевого балансирования высокой доли разнообразных возобновляемых источников энергии и интеграции электроэнергетического и теплоэнергетического секторов в энергосистемах для достижения 100 % доли возобновляемой энергии.

Аккумулирование солнечной энергии

Самые активно применяемые системы солнечного отопления могут хранить энергию сроком от нескольких часов до нескольких дней. Однако, наблюдается рост числа мощностей, использующих сезонное аккумулирование тепловой энергии (САТЭ), что позволяет хранить солнечную энергию летом, чтобы использовать ее для отопления помещений в зимний период. Солнечное сообщество Дрэйк Лэнлинг из провинции Альберта в Канаде сейчас научилось использовать 97 % солнечной энергии круглый год, что является рекордом, ставшим возможным только благодаря использованию САТЭ.

Использование как скрытой, так и явной теплоты также возможно в высокотемпературных системах приема солнечной тепловой энергии. Различные эвтектические смеси металлов типа Алюминия и Кремния (AlSi12) предлагают высокую точку плавления для эффективного производства пара, в то время как глиноземные смеси на основе цемента предлагают хорошие свойства хранения тепла.

Технология расплава солей

Явная теплота расплава солей также используется для хранения солнечной энергии при высоких температурах. Расплавы солей могут применяться в качестве метода аккумулирования остаточной тепловой энергии. На данный момент это – коммерческая технология для хранения тепла, собранного гелиоконцентраторами (к примеру, с СЭС башенного типа или параболоцилиндров). Тепло позднее может быть преобразовано в перегретый пар для питания обычных паровых турбин и выработки электричества в плохую погоду или ночью. Это было продемонстрировано в 1995—1999 годах в рамках проекта «Solar Two». Оценки 2006 года предсказывали годовую эффективность в 99 %, ссылаясь на сравнение энергии, сохраненной в виде тепла перед преобразованием в электричество и преобразования тепла в электричество напрямую. Используются различные эвтектические смеси солей (к примеру, нитрат натрия, нитрат калия и нитрат кальция). Использование таких систем в качестве среды переноса тепла заметно в химической и металлургической промышленности.

Соль плавится при 131C (268F). Она хранится в жидком состоянии при 288C (550F) в изолированных «холодных» емкостях для хранения. Жидкая соль перекачивается через панели солнечного коллектора, где сфокусированное солнечное тепло нагревает ее до 566C (1 051F). Затем оно отправляется в горячую емкость для хранения. Сама изоляция емкости может использоваться для хранения тепловой энергии в течение недели. В случае потребности в электричестве, горячий расплав солей перекачивается в обычный парогенератор для производства перегретого пара и запуска стандартной турбогенераторной установки, используемой на любой угольной, нефтяной или атомной электростанции. Турбина мощностью в 100 МВт потребует емкость высотой в 9,1 м (30 футов) и диаметром 24 м (79 футов) для ее запуска в течение четырех часов по подобному принципу.

В разработке находится единый бак с разделительной плитой для сохранения и холодного, и горячего расплава солей. Гораздо более экономичным будет достижение на 100 % большего количества хранения энергии на единицу объема в сравнении со сдвоенными емкостями, так как емкость для хранения расплава солей достаточно дорога из-за сложной конструкции. Солевые грелки также используются для хранения энергии в расплавах солей.

Несколько параболоцилиндрических электростанций в Испании и «Solar Reserve» — разработчик солнечных электростанций башенного типа использует этот концепт для хранения тепловой энергии. Электростанция Солана в США может хранить в расплавах солей энергию, которая вырабатывается 6 часов. Летом 2013 года на электростанции «Gemasolar Thermosolar», работающей и как гелиоконцентратор, и как электростанция на расплавах солей в Испании, впервые удалось непрерывного производства электричества в течение 36 дней.

Накопление тепла в емкостях и пещерах в скалах

Паровой аккумулятор состоит из изолированного стального резервуара высокого давления, содержащего горячую воду и пар под давлением. В качестве метода для хранения тепла он используется для того, чтобы уравновешивать производства тепла изменчивыми или стабильными источниками при изменяющемся спросе на тепло. Паровые аккумуляторы могут стать действительно необходимыми для накопления энергии в проектах, связанных с тепловой солнечной энергией.

Крупные накопители широко применяются в Скандинавии для хранения тепла в течение нескольких дней, разделения производства тепла и энергия и помощи в удовлетворении пикового спроса. Исследовалось (и оказалось экономически выгодным) межсезонное аккумулирование тепла в пещерах.

Накопление тепла в горячей породе, бетоне, гальке и т.д.

Вода обладает одной из самых высоких теплоемкостей – 4,2 Дж/см3*К, тогда как бетон обладает лишь одной третью от этого значения. С другой стороны, бетон может нагреваться до гораздо более высоких температур – 1200C за счет, например, электронагрева и, таким образом, обладает гораздо большей общей емкостью. Следуя из примера далее, изолированный куб примерно 2,8 м в поперечнике может оказаться способным обеспечивать достаточный объем хранимого тепла для одного дома, чтобы удовлетворить 50 % потребности в отоплении. В принципе, это может быть использовано для хранения избыточной ветряной или фотоэлектрической тепловой энергии благодаря способности электронагрева к достижению высоких температур. На уровне округов международное внимание привлек проект «Виггенхаузен-Зюд» в немецком городе Фридрисхафене. Это – железобетонный теплоаккумулятор объемом в 12 000 м3 (420 000 куб.фт.), соединенный с комплексом солнечных коллекторов площадью 4 300 м2 (46 000 квадр. фт), наполовину обеспечивающих потребность в горячей воде и отоплении у 570 домов. Компания «Siemens» строит под Гамбургом хранилище тепла емкостью 36 МВТ*ч, состоящее из базальта, разогретого до 600C, и выработкой энергии в 1,5 МВт. Схожая система планируется для постройки в датском городе Сорё, где 41-58 % накопленного тепла емкостью в 18 МВт*ч будет передаваться для центрального теплоснабжения города, а 30-41 % — как электричество.

Читайте также:  Свёкла с чесноком на зиму видео

Технология сплава на границе растворимости

Сплавы на границе растворимости основаны на изменении фазы металла с целью хранения тепловой энергии.

Вместо того, чтобы перекачивать жидкий металл между емкостями, как в системе с расплавом солей, металл заключается в капсулу из другого металла, с которым не может сплавиться (не поддающийся смешению). В зависимости от выбора двух материалов (материал, меняющий фазу и материал капсулы), плотность хранения энергия может оставлять 0,2-2 МДж/л.

Рабочая среда, как правило – вода или пар, используется для передачи тепла к и от сплава на границе растворимости. Теплопроводность таких сплавов зачастую выше (до 400 Вт/м*К), чем у конкурирующих технологий, что означает более быструю возможную «загрузки» и «разгрузки» теплового хранилища. Технология еще не реализована для использования в промышленных масштабах.

Электротермические накопители

Электроаккумуляционные печи – обычное дело для европейских домов с регистрацией электропотребления с учетом времени суток (чаще всего использующие более дешевое электричество ночью). Они состоят из керамических кирпичей высокой плотности или феолитовых блоков, нагретых электричеством до высоких температур, которые могут иметь или не иметь хорошую изоляцию и контролируют высвобождение тепла через определенное число часов.

Технологии с использованием льда

Разрабатывается ряд технологий, где лед производится во внепиковые периоды и позднее используется для охлаждения. К примеру, кондиционирование воздуха может быть экономичнее за счет использования дешевого электричества ночью для заморозки воды и последующего использования холодильной мощности льда днем для уменьшения количества энергии, требуемой для поддержания кондиционирования воздуха. Аккумулирование тепловой энергии с применением льда использует высокую теплоту плавления воды. Исторически лед перевозили с гор в города, чтобы использовать его, как охладитель. Одна метрическая (= 1 м3) тонна воды может хранить 334 миллиона джоулей (Дж) или 317 000 Британских термических единиц (93 кВт*ч). Относительно небольшой накопитель может хранить достаточно льда, чтобы охлаждать крупное здание целый день или неделю.

Помимо применения льда для прямого охлаждения, он также используется в тепловых насосах, на которых работают системы отопления. В этих сферах изменения энергии фазы обеспечивают очень серьезный теплопроводный слой, близкий к нижнему порогу температур, при котором может работать тепловой насос, использующий теплоту воды. Это позволяет системе переносить серьезнейшие отопительные нагрузки и увеличивать промежуток времени, в течение которого элементы источников энергии могут возвращать тепло в систему.

Сверхпроводящий накопитель энергии

В этом процессе используется разжижение воздуха или азота, как способ хранения энергии.

Первая система накопления энергии при сверхнизких температурах, использующая жидкий воздух в качестве накопителя энергии, а низкопробное бросовое тепло – для запуска повторного теплового расширения воздуха, работает на электростанции в городе Слау (Великобритания) с 2010 года.

Технологии на основе горячего кремния

Твердый или расплавленный силикон предлагает гораздо более высокие температуры хранения, чем соли, а значит – и большие емкость и КПД. Он был исследован, как, возможно, гораздо более эффективная технология хранения энергии. Кремний способен хранить более 1 МВт*ч энергии на м3 при температуре в 1400C.

Накопление электричества после накачки теплом

В случае накопления электричества после накачки теплом (НЭПНТ) двухсторонняя теплонасосная система используется для сохранения энергии за счет разницы температур между двумя накопителями тепла.

Система от «Isentropic»

Система, которая была разработана ныне обанкротившейся британской фирмой «Isentropic», работала так, как указано ниже. Она включала в себя два изолированных контейнера, заполненных измельченной породой или гравием; нагретый сосуд, хранящий тепловую энергию при высокой температуре и давлении, и холодный сосуд, хранящий тепловую энергию при низкой температуре и давлении. Сосуды соединены трубами вверху и внизу, а вся система заполнена инертным газом аргоном.

Во время цикла зарядки система использует внепиковое электричество для работы в качестве теплового насоса. Аргон из верхней части холодного сосуда при температуре и давлении, сравнимыми с атмосферными, адиабатически сжимается до давления в 12 бар, нагреваясь до примерно 500C (900F). Сжатый газ перегоняется в верхнюю часть нагретого сосуда, где он просачивается сквозь гравий, передавая свое тепло породе и охлаждаясь до температуры окружающей среды. Охлажденный, но все еще находящийся под давлением, газ оседает на дне сосуда, где снова расширяется (опять же адиабатически) до 1 бара и температуры в -150C. Затем холодный газ проходит через холодный сосуд, где охлаждает породу, нагреваясь до своего изначального состояния.

Энергия снова превращается в электричество при обратном проведении цикла. Горячий газ из нагретого сосуда расширяется, чтобы запустить генератор, и затем отправляется в холодное хранилище. Охлажденный газ, поднявшийся со дна холодного сосуда, сжимается, нагревая газ до температуры окружающей среды. Затем газ направляется ко дну нагретого сосуда, чтобы снова подвергнуться нагреванию.

Процессы сжатия и расширения обеспечиваются специально разработанным поршневым компрессором, использующим скользящие клапаны. Дополнительное тепло, вырабатываемое в ходе недостатков процесса, уходит в окружающую среду через теплообменники во время цикла разрядки.

Разработчик заявляет, что КПД цикла в 72-80 % вполне реален. Это позволяет сравнивать его с накоплением энергии от ГАЭС, КПД которого составляет свыше 80 %.

Другая предлагаемая система использует турбины и способна работать с гораздо большими объемами энергии. Использование солевых грелок в качестве накопителя энергии позволит продвинуть исследования вперед.

Эндотермические и экзотермические химические реакции

Технология на основе гидратов солей

Примером экспериментальной технологии накопления энергии на основе энергии химических реакций является технология на основе гидратов солей. Система использует энергию реакции, создаваемой в случае гидратации или дегидратации солей. Это работает благодаря хранению тепла в резервуаре, содержащем 50 %-ный раствор гидроксида натрия. Тепло (к примеру, получаемое с солнечного коллектора) хранится за счет испарения воды в ходе эндотермической реакции. Когда воду добавляют вновь, в ходе экзотермической реакции при 50C (120F) высвобождается тепло. На данный момент системы работают с КПД в 60 %. Система особенно эффективна для сезонного накопления тепловой энергии, так как высушенная соль может храниться при комнатной температуре длительное время без потерь энергии. Контейнеры с обезвоженной солью даже могут перевозиться в различные места. Система обладает большей плотностью энергии, чем тепло, накопленное в воде, а ее мощность позволяет хранить энергию в течение нескольких месяцев или даже лет.

В 2013 году голландский разработчик технологий «TNO» представил результаты проекта «MERITS» по хранению тепла в контейнере с солью. Тепло, которое может доставляться с солнечного коллектора на плоскую крышу, выпаривает воду, содержащуюся в соли. Когда воду добавляют снова, тепло высвобождается практически без потерь энергии. Контейнер с несколькими кубометрами соли может хранить достаточно термохимической энергии, чтобы обогревать дом всю зиму. При температурном режиме, как в Нидерландах, среднее теплоустойчивое хозяйство потребует за зиму примерно 6,7 ГДж энергии. Чтобы сохранить столько энергии в воде (при разнице температур в 70C), потребовалось бы 23 м3 воды в изолированном резервуаре, что превышает возможности хранения большинства домов. С использованием технологии на основе гидрата солей с плотностью энергии около 1 ГДж/м3, достаточно было бы 4-8 м3.

Читайте также:  Скандинавский стиль кухни это

По состоянию на 2016 год, исследователи из нескольких стран проводят эксперименты по определению наилучшего типа соли или смеси солей. Низкое давление внутри контейнера кажется наилучшим для передачи энергии. Особенно перспективными являются органические соли, так называемые «ионные жидкости». По сравнению с сорбентами на основе галида лития они вызывают гораздо меньше проблем в условиях ограниченных природных ресурсов, а в сравнении с большинством галидов и гидроксидом натрия – менее едки и не дают негативного воздействия через выбросы углекислого газа.

Молекулярные химические связи

На данный момент исследуется возможность хранения энергии в молекулярных химических связях. Уже достигнута плотность энергии, эквивалентная ионно-литиевым батареям.

Экология потребления.Наука и техника: Теплоаккумулятор с использованием раствора сульфата натрия обеспечивает значительно в 8-10 раз большее количество запасаемого аккумулятором тепла, по сравнению с простой водой

Проблемы накопления и сохранения тепла по прежнему актуальны и весьма заманчиво решить их с помощью на простого нагрева какого либо теплоемкого тела, а с использованием физических особенностей перехода вещества из одного агрегатного состояния в другое. Известно, что количество тепла, необходимое для, например, плавления льда в воду эквивалентно количеству тепла необходимому для нагрева этой же воды на 80 (!) градусов.

К сожалению, число веществ, изменяющих свое агрегатное состояние в диапазоне температур солнечного коллектора (40-70 гр.С) не так велико. Да и те — достаточно дороги. Это прежде всего — парафины. Можно составить смесь парафинов плавящихся в этом диапазоне температур. Но парафины достаточно дороги (>1$US за килограмм). К счастью, есть и другое вещество — сульфат натрия или глауберова соль.

Поскольку в строящемся мною доме предполагается активно использовать тепловой аккумулятор (совместно с солнечным коллектором и отопительными приборами), то есть смысл рассмотреть возможную реализацию его на основе глауберовой соли или сульфата натрия.

Подробнее, что такое сульфат натрия вы можете узнать, набрав в любом поисковике запрос «сульфат натрия» или «глауберова соль», я лишь упомяну об одном замечательном свойстве этого минерала, вернее одной его разновидности – т.н. десятиводном сульфате. Десятиводный он потому, что каждая его молекула «связывает» вокруг себя 10 молекул воды. В результате чего сульфат начинает растворяться в собственной воде с ростом температуры с огромным поглощением тепла. При температуре +32 градуса он становится густой жидкостью. А при охлаждении ниже этой температуры может начать кристаллизоваться и отдавать тепло назад. Количество тепла достаточно велико — 78,5 кДж/моль. Что эквивалентно количеству тепла, запасаемого водой, например (4,2 кДж/кг*град) в диапазоне либо несколько десятков градусов (!) одним литром, либо десятками литров воды!

«Может» — потому, что если насыщенный раствор сульфата натрия находится а абсолютном покое, то кристаллов не образуется. Но если его переохлажденный раствор сотрясти или как то побеспокоить, то начинается лавинообразная кристаллизация с сильным разогревом. Раствор быстро нагревается до +32 и поддерживает эту температуру, пока весь не кристаллизуется. Т.е. в зависимости от обстоятельств и желания, можно получить запасенное тепло либо сразу, по мере остывания. А можно – по желанию, вызвал кристаллизацию переохлажденного раствора.

Эти замечательные свойства, разумеется, открыл не я, они давным-давно известны и используются исследователями альтернативных источников энергии. Вот и я решил провести кое-какие эксперименты. Для чего было закуплено некоторое количество глауберовой соли.

Глауберова соль продается в обезвоженном виде (иначе ее было бы очень трудно хранить). Поэтому я взял примерно 2 литра горячей воды и начал растворять в ней сульфат натрия до состояния насыщенного раствора (т.е. до тех пор, пока соль не перестанет растворяться). В 2-х литрах растворилось примерно 600-650 мл соли. (мне удобно пользоваться объемными мерами, ввиду отсутствия точных весов). Плотность сульфата — примерно 1,5 Кг/литр, т.е. в литре растворилось примерно 450-480 грамм (что близко к справочным показателям — максимальная его растворимость в воде при 32,4° С, которая составляет 49,8 г в 100 г воды (в расчете на безводную соль). После тщательного двойного процеживания раствора через фильтровальную бумагу (фильтры для кофеварки), я приступил к опытам.

Важно было максимально точно воспроизвести условия, в которых будет «работать» раствор сульфата натрия в условиях теплового аккумулятора. Как то: абсолютная неподвижность ( в подвале канистры с раствором никто беспокоить не будет); достаточно медленные процессы нагрева и охлаждения, поэтому охлаждение осуществляется естественным образом, а нагрев — очень маломощной электрической грелкой, которой я оборачивал бутылку с раствором.

Контроль температуры производился с помощью лабораторного ртутного термометра (к сожалению, электронного в выносным датчиком под рукой не оказалось). Что бы измерять температуру раствора, и при этом не вмешиваться в раствор, пришлось сбоку бутылки приделать специальную П-образную «капсулу» из пенополистирола, в которую вставлялся термометр так, что бы своей колбой с ртутью касаться стенки бутылки. Для улучшения теплопередачи от бутылки к термометру я туда натолкал алюминиевой фольги. Впрочем, важно было отследить динамику температур в различных условиях, а не ее абсолютные значения.

Нагрев с помощью электрической грелки раствор до 45 градусов (примерно до такой температуры я рассчитываю заряжать свой теплоаккумулятор в эко-доме) я установил ее место, где она на подвергалась вибрациям, дополнительному нагреву или охлаждению и достаточно прохладное место. Т.е. в погребе (фактически — подвал дома и будет погребом, так что условия схожи). Температура окружающего воздуха +10 градусов.

Результаты проведенных испытаний вы видите на графике:

Пояснения:

Синий график – график остывания воды. Как видите, тут никаких «приключений». Вода остывает по обратной экспоненте, стремясь к температуре окружающего ее воздуха. И чем меньше разница температуры между водой и воздухом, тем медленнее идет остывание.

График остывания раствора соли БЕЗ инициализации кристаллизации совершенно повторяет график остывания воды. Поэтому я даже не стал его рисовать.

Красный график — график остывания насыщенного раствора с внесенной затравкой. Дело в том, что для того, что бы началась естественная кристаллизация в растворе, необходимо наличие какой-либо неоднородности. Обычно ею служит некоторое количество нерастворенной соли на дне сосуда. Т.е. раствор немного пересыщен. По мере остывания раствора, в точке «А» началась кристаллизация соли в бутылке и процесс остывания резко замедлился. Тепло, выделяющееся при кристаллизации нагревало сам раствор и компенсировало теплопотери. Так продолжалось до точки «В».

Следует учитывать, что я фактически измерял не температуру раствора, а температуру поверхности бутылки. Но именно это и важно, поскольку воздух в теплоакккумуляторе будет контактировать не с раствором, а именно с поверхностью канистр, в которых будет находится теплоаккумулирующее вещество, вода или раствор сульфата натрия.

Читайте также:  Сколько времени горит серная шашка фас

В точке «В» кристаллы заняли примерно 4/5 объема бутылки и выделение тепла замедлилось, хотя ее верхняя часть все еще была на ощупь ощутимо теплее той зоны, в которой находился термометр. Очевидно, что просто передача тепла внутри самой бутылки замедлилась и термометр перестал фиксировать ее.

Зеленый график — график поведения переохлажденного раствора. Раствор без затравки был просто охлажден до +15, а на следующие сутки в нем была вызвана кристаллизация (фактически – прикосновением к бутылке). Сразу начали расти кристаллы по всему объему бутылки, а бутылка фактически мгновенно разогрелась до 27 градусов (наружная температура поверхности). После разогрева часть кристаллов снова «расплавилась» и раствор перешёл в равновесное состояние. Т.е. кристаллизовалась только та часть раствора, необходимая на поддержание температуры равновесия.

Выводы.

Как видим из графиков, теплоаккумулятор с использованием раствора сульфата натрия обеспечивает значительно большее количество запасаемого аккумулятором тепла, практически в 8-10 раз, по сравнению с простой водой. Причем температура раствора находится в самой комфортной температурной зоне для человека — + 20-27 градусов!

Формально можно сказать, что 100 литров раствора могут заменить примерно 1 тонну воды по теплоемкости.

Но наряду с этим достоинством проявляются и его определенные особенности. Не хочу писать «недостатки» потому что они могут обернутся и дополнительными достоинствами, смотря как ими распорядиться.

В частности, достаточно трудно вызвать «монотонную» кристаллизацию раствора, т.е. естественную, в процессе остывания. Это можно сделать затравкой, но тогда процесс становится неуправляемым. Поэтому, очевидно придется придумать какой то прибор с термодатчиком, который бы срабатывал и вызывал кристаллизацию раствора при его охлаждении, например до 20-24 градусов. С другой стороны, следует предусмотреть возможность управления этим прибором вручную. Тогда в ситуации, когда тепловой аккумулятор разряжен до 20 градусов и хотелось бы поднять его температуру за счет кристаллизации раствора сульфата, НО прогноз погоды в ближайшее день-два обещает потепление или просто солнечные дни, которые позволят подзарядить теплоаккумулятор, можно будет лучше немного «потерпеть», но сохранить потенциал ТА полностью. И в конце-концов, ТА — это не один большой бассейн, а набор емкостей с водой или раствором сульфата. И кто мешает организовать достаточно гибкое управление им, что бы начинать кристаллизацию раствора по частям.

Так же следует провести и небольшой экономический анализ целесообразности применения сульфата натрия. Он хотя и недорог, но не бесплатен. Стоимость его – 7-8 рублей за килограмм. А 1 килограмм соли (сухой) дает нам 2,5 литра насыщенного раствора.

Допустим, мы купили 1 тонну соли, что даст нам 2500 литров раствора. И обошлось нам это примерно в 8000 рублей. Теперь давайте сравним.

8000 рублей — это примерно 5000 чистых кВт электроэнергии, или 18.000 МДж тепла. КПД электронагревателей близко к 100%.

8000 рублей — это примерно 5 кубометров дров (3000 кг). Это, с учетом КПД печи даст нам примерно 20.000-25.000 МДж тепла

Просто бесплатная вода (2500 литров) остывая с 40 градусов до 20 (когда еще есть смысл отнимать у нее тепло для обдува помещения воздухом такой температуры) Не отдает 200 МДж

А 2500 литров сульфата натрия дадут нам тепла соответственно в 6 раз (берем по минимуму) больше. Т.е. 200 х 6 = 1200 МДж.

Получается, что прежде чем затраты на сульфатный теплоаккумулятор окупятся, он должен будет совершить как минимум полных «оборотов» 15 по сравнению с электричеством, и 20 по сравнению с дровами.

С одной стороны, затраты на теплоаккумулятор являются разовыми и будут «отбиваться» достаточно долго, очевидно 2-3 года. А за электричество можно платить малыми дозами, и дрова можно использовать «случайные» — валежник вдоль дорог, всякое деревянное старье и отходы. А с другой стороны, и дрова, и электричество можно сжечь только 1 раз. И потом придется вновь тратить очередные «8000 тысяч» на них. А теплоаккумулятор будет служить долгие годы, возможно – десятилетия…

Поэтому тут уж каждый решает сам — стоит ли тратиться на сульфат натрия, или просто увеличить объем обычного водяного теплоаккумулятора в 6-10 раз, и строить ли его вообще… Очевидно, что использование сульфата — выход для тех, кто не может себе позволить достаточно объемный теплоаккумулятор на обычной воде или гравийно-каменнный.опубликовано econet.ru

Понравилась статья? Напишите свое мнение в комментариях.
Подпишитесь на наш ФБ:

Альтернативой камням и воде для систем с воздушными солнечными коллекторами являются фазопереходные (эвтектические) соли. Принцип аккумулирования тепла солями заключается в том, что материал накапливает значительное количество тепловой энергии при переходе из твердого состояния в жидкое (в период плавления) и отдает накопленное тепло при затвердевании. В процессе фазового превращения вещества его температура не меняется, но выделяется так называемая скрытая теплота фазового перехода, количество которой достаточно велико. Например, для изменения температуры 1 кг воды на 1°C требуется 1,055 кДж. Однако для того, чтобы лед растаял, требуется уже 152 кДж.

Очевидно, что температура таяния льда слишком мала для аккумулирования полезного тепла, и поэтому уже несколько десятков лет проводятся исследования с эвтектическими солями, имеющими более высокие температуры плавления. Наиболее широко изученной является общеизвестная глауберова соль, которая плавится при температуре 32,2°С и в процессе плавления аккумулирует 244 кДж на 1 кг. Поэтому применение таких солей приводит к существенному уменьшению объемов теплоаккумулирующих отсеков.

К выбору подходящей соли для солнечного теплоаккумулятора предъявляются следующие требования:

  • соль должна быть сравнительно дешевой;
  • ее фазовый переход должен обладать хорошим эффектом скрытой теплоты, т.е. соль при плавлении должна накапливать большое количество тепла;
  • соль должна быть доступна в больших количествах;
  • соль должна обладать хорошей воспроизводимостью свойств на протяжении большого числа фазопереходных циклов без серьезного ухудшения эффекта скрытой теплоты;
  • ее фазовый переход должен происходить вблизи от реальной температуры плавления соли;
  • приготовление соли для применения должно быть сравнительно простым;
  • соль должна быть безвредной (нетоксичной, невоспламеняющейся, негорючей, некорродирующей);
  • способ упаковки соли в контейнер и материал контейнера должны обеспечивать наилучшие условия передачи тепла к соли и от нее.

В настоящее время на практике используются 2 вида веществ для теплоаккумуляторов скрытой теплоты:

  • хлорид кальция;
  • сульфат кальция (глауберова соль).

Хлорид кальция имеет точку плавления 29°C, тепловой эффект фазового перехода из твердого в жидкое состояние составляет 175,85 кДж/кг (при плотности 1,622 кг/м 3 ).

Аккумуляторам, использующим скрытую теплоту фазовых переходов, как и воде, свойственно явление переохлаждения, и при применении таких аккумуляторов особенно важно его предотвратить. Для аккумуляторов на основе хлорида кальция разработана и введена в практику добавка в виде хлористого стронция, который предовращает переохлаждение расплава и отличается большой надежностью.

Аккумуляторы с использованием скрытой теплоты фазовых переходов, в которых теплоаккумулирующее вещество помещено в полиэтиленовые емкости, можно хранить в помещениях и применять в системе солнечного отопления. Такие вещества применяют и в аккумуляторных баках с воздушным и водяным нагревом.

Понравилась статья? Поделиться с друзьями:
ТурбоЗайм
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.

Adblock detector