Теплоизоляционные материалы для трубопроводов тепловых сетей

Б. М. Шойхет, канд. техн. наук, заведующий отделом,

Л. В. Ставрицкая, главный специалист, АО «Теплопроект»,

Я. А. Ковылянский, канд. техн. наук, заместитель генерального директора по научной работе, АО «ВНИПИЭнергопром»

Реализация программы энергосбережения в Российской Федерации в значительной степени определяется надежным и экономичным функционированием систем теплоснабжения в промышленности и ЖКХ. Тепловые сети являются одним из основных элементов систем централизованного теплоснабжения.

Наиболее экономичным видом прокладки теплопроводов тепловых сетей является надземная прокладка. Однако с учетом архитектурно-планировочных требований, требований экологии в населенных пунктах основным видом прокладки является подземная прокладка в проходных, полупроходных и непроходных каналах. Бесканальные теплопроводы, являясь более экономичными в сравнении с канальной прокладкой по капитальным затратам на их сооружение, применяются в тех случаях, когда они по теплотехнической эффективности и долговечности не уступают теплопроводам в непроходных каналах.

Проектирование тепловых сетей всех способов прокладки осуществляется в соответствии с требованиями СНиП 2.04.07-86* «Тепловые сети». Требования к конструкциям тепловой изоляции и нормы плотности теплового потока от теплоизолированных трубопроводов в зависимости от диаметра трубопровода, температуры теплоносителя и вида прокладки (надземная или подземная) регламентируются СНиП 2.04.14-88 «Тепловая изоляция оборудования и трубопроводов» с изменением № 1.

Тепловая изоляция предусматривается для линейных участков трубопроводов тепловых сетей, арматуры, фланцевых соединений, компенсаторов и опор труб для надземной, подземной канальной и бесканальной прокладки.

При выборе материалов теплоизоляционных конструкций трубопроводов, прокладываемых в жилых, общественных и производственных зданиях и проходных тоннелях, следует учитывать требования норм проектирования на эти объекты в части пожарной опасности.

Наименование материала 1 2 3 4 5
Армопенобетон 50-1400 200+50 0,05 300 0,5
Пенополимер-минерал 50-500 200-250 0,047 150 1,2
Пенополиуретан 50-1000 60-80 0,03 130 0,3

1. Условный проход трубопровода, мм

2. Средняя плотность r , кг/м 3

3. Теплопроводность сухого материала l , Вт/(м °С)

4. Максимальная температура применения, °С

5. Предел прочности при сжатии, МПа

Для изоляции арматуры, сальниковых компенсаторов и фланцевых соединений следует применять преимущественно съемные теплоизоляционные конструкции.

В качестве теплоизоляционного слоя в этих конструкциях наибольшее применение в практике находят теплоизоляционные изделия на основе минерального и стеклянного волокна, выпускаемые различными предприятиями по ГОСТ 21880-94, ГОСТ 9573-96, ГОСТ 10499-95 и Техническим условиям (ТУ) производителей.

Эффективными теплоизоляционными изделиями для прокладываемых в каналах трубопроводов тепловых сетей являются цилиндры из минеральной ваты и стекловолокна. Российскими производителями этой продукции являются

ЗАО «Минеральная вата» и Назаров-ский ЗТИ. Импортная продукция представлена цилиндрами фирм Rockwool, «Флайдерер-Чудово», «Парок», «Изовер». Преимуществом этих изделий является их формостабильность и технологичность при монтаже. Применение формостабильных теплоизоляционных изделий обеспечивает снижение трудозатрат при монтаже теплоизоляции тепловых сетей в каналах.

В конструкциях теплоизоляции подземных трубопроводов канальной прокладки с учетом возможного попадания в конструкцию капельной влаги рекомендуется применять только гидрофобизированные теплоизоляционные материалы. Для ограничения увлажнения волокнистой теплоизоляции при надземной и подземной канальной прокладке по теплоизоляционному слою устанавливается защитное покрытие из гидроизоляционных материалов. В отечественной практике в конструкциях с минераловатными и стекловатными утеплителями при прокладке в каналах используются стеклопластики по ТУ 6-48-87-92, ТУ 36.16.22-68-95, ТУ 6-48-00204961-14-90, изол, гидроизол, полимерные пленки и штукатурные покрытия. При надземной прокладке применяются преимущественно металлические покрытия из оцинкованной стали и алюминиевых сплавов.

Перспективным теплоизоляционным материалом для трубопроводов тепловых сетей с температурным графиком 95–70°C в проходных и непроходных каналах и систем горячего водоснабжения, прокладываемых в технических подпольях и подвалах зданий, является вспененный каучук, производимый фирмой L’Isolante K-Flex под фирменной маркой К-Flex. Изделия К-Flex марки ЕС и ST имеют предельную температуру применения 116°C, а при испытаниях на горючесть по ГОСТ 30244 относятся к группе Г1. Следует отметить, что эти изделия имеют разрешение № РРС 04-5986 Госгортехнадзора России на их использование на объектах, подконтрольных этому ведомству.

Для трубопроводов тепловых сетей подземной бесканальной прокладки применяются преимущественно предварительно изолированные в заводских условиях трубы с гидроизоляционным покрытием, исключающим возможность увлажнения изоляции в процессе эксплуатации.

В качестве основного теплоизоляционного слоя в конструкциях теплоизолированных трубопроводов бесканальной прокладки по СНиП 2.04.07-86* и СНиП 2.04.14-88 рекомендуется применять армопенобетон (АПБ), пенополимерминерал (полимербетон) и пенополиуретан (ППУ).

Применявшиеся ранее конструкции на основе битумоперлита, битумовермикулита, битумокерамзита, фенольных пенопластов (ФРП-1, ФЛ) по физико-техническим и эксплуатационным характеристикам уже не отвечают современным требованиям, в частности, нормам плотности теплового потока по изменению № 1 к СНиП 2.04.14-88. Эти материалы могут использоваться при соответствующем технико-экономическом обосновании в условиях, когда отсутствуют указанные выше, эффективные теплоизоляционные материалы.

Трубы с армопенобетонной изоляцией диаметром от 57 до 1 420 мм выпускаются ЗАО «Изоляционный завод» (Санкт-Петербург) по ТУ 4859-002-03984155-99. Современный армопенобетон характеризуется низкой плотностью (200–250 кг/м 3 ) и теплопроводностью (0,05 Вт/(м•К)) при высокой прочности на сжатие (не менее 0,7 МПа). К преимуществам АПБ относятся его негорючесть, высокая температура применения (до 300°C), отсутствие коррозионного воздействия на стальные трубы, паропроницаемость гидрозащитного покрытия и, как следствие, долговечность. По данным ЗАО «Изоляционный завод» (Санкт-Петербург), более 1 000 км труб с изоляцией из армопенобетона, изготовленных на этом предприятии, находятся в эксплуатации уже более 25 лет. Предызолированные трубы с изоляцией из армопенобетона могут применяться во всем диапазоне температур теплоносителя как в водяных, так и в паровых тепловых сетях всех видов прокладки, включая подземную бесканальную, подземную в проходных и непроходных каналах и надземную прокладку.

Читайте также:  Сколько работает батарея смартфона

Предварительно изолированные в заводских условиях трубы с тепловой изоляцией на основе ППУ и защитным покрытием из полиэтилена высокой плотности по ГОСТ 30732-2001 применяются для тепловых сетей подземной бесканальной прокладки с температурой теплоносителя до 130°C. Теплопроводы оборудованы системой оперативного дистанционного контроля технического состояния теплоизоляции, позволяющей своевременно обнаруживать и устранять возникающие дефекты.

К преимуществам теплопроводов с ППУ-изоляцией относят низкий коэффициент теплопроводности ППУ (0,032–0,035 Вт/(м•К)), технологичность при изготовлении и при монтаже теплопроводов, долговечность при соблюдении требований монтажа и эксплуатации.

Ограничения в применении ППУ-изоляции в тепловых сетях определяются допустимой температурой применения (130°C), горючестью, высокой дымообразующей способностью и токсичностью выделяемых при горении компонентов.

Предельная максимальная температура применения 130°C не позволяет использовать ППУ для изоляции трубопроводов водяных тепловых сетей, работающих по температурным графикам 150–70 и 180–70°C и паропроводов. Следует отметить, что ГОСТ 30732-2001 допускает применение ППУ при кратковременном повышении температуры до 150°C.

Пенополиуретан при испытаниях по ГОСТ 30244, в зависимости от рецептуры, относится к группам Г3 и Г4, что ограничивает возможность его применения для тепловой изоляции трубопроводов тепловых сетей, надземной прокладки и подземной в проходных и непроходных каналах и тоннелях.

Пенополимерминерал (полимербетон) разработан Институтом ВНИПИЭнер-гопром и более 20 лет применяется в конструкциях тепловой изоляции трубопроводов диаметром до 500 мм, изготавливаемых по ТУ 5768-006-00113537-2001. Характеризуется интегральной структурой, совмещающей функции теплоизоляционного слоя и гидроизоляционного покрытия. Имеет температуру применения до 150°C, при испытаниях на горючесть по ГОСТ 30244 относится к группе Г1.

Плотность теплового потока, Вт/м Толщина теплоизоляции,
м
Стоимость теплоизоляции, руб. Стоимость тепла,
руб.
Суммарная стоимость,
руб.
40 0,246 2 817 344 3 160
45 0,196 1 968 387 2 355
50 0,162 1 465 430 1 895
55 0,137 1 143 473 1 616
60 0,118 923 516 1 439
65 0,103 765 559 1 324
70 0,092 648 602 1 250
75 0,082 559 645 1 204
80 0,074 489 688 1 176
85 0,067 432 731 1 163
90 0,062 386 774 1 160
95 0,057 348 817 1 164
100 0,053 315 860 1 175
105 0,049 288 903 1 191
110 0,046 264 946 1 210
115 0,043 243 989 1 232
120 0,040 225 1 032 1 257
125 0,038 210 1 075 1 284
130 0,036 195 1 118 1 313
135 0,034 183 1 161 1 344
140 0,032 171 1 204 1 375
Расчетные данные в оптимальной точке
Толщина теплоизоляции, мм 62,47
Теплопотери в подающей трубе, Вт/м 62,562
Теплопотери в обратной трубе, Вт/м 26,813

В соответствии с требованиями СНиП 2.04.14-88 теплоизоляционные материалы, применяемые для тепловой изоляции трубопроводов бесканальной прокладки, должны иметь прочность на сжатие не менее 0,4 МПа.

Технические характеристики материалов, рекомендуемых к применению в качестве теплоизоляционного слоя в конструкциях тепловой изоляции трубопроводов бесканальной прокладки, приведены в табл.

При бесканальной прокладке трубопроводов расчетный коэффициент теплопроводности основного теплоизоляционного слоя в конструкции lk определяется с учетом возможного увлажнения при эксплуатации. Коэффициент, учитывающий увеличение теплопроводности теплоизоляционного материала при увлажнении, в настоящее время принимается по СНиП 2.04.14-88 и в зависимости от вида теплоизоляционного материала и влажности грунта по ГОСТ 25100 имеет значения в пределах 1,0–1,15. Следует отметить, что значения этих коэффициентов подлежат уточнению с учетом эффективности применяемых в современной практике гидроизоляционных покрытий. Так, для труб с ППУ-изоляцией в оболочке из полиэтилена высокой плотности и системой контроля влажности этот коэффициент может быть принят равным 1 независимо от влажности грунта. Для труб с армопенобетонной изоляцией и паропроницаемым гидроизоляционным покрытием и труб с пенополимерминеральной изоляцией с интегральной структурой, допускающих возможность высыхания теплоизоляционного слоя в процессе эксплуатации, коэффициент увлажнения, вероятно, может быть снижен до значений 1,05 в маловлажных и влажных грунтах и 1,1 в насыщенных водой грунтах по ГОСТ 25100.

При бесканальной прокладке трубопроводов тепловых сетей не рекомендуется применение теплоизоляционных конструкций на основе штучных теплоизоляционных изделий с устройством гидроизоляционного покрытия на месте монтажа для линейных участков трубопроводов.

Практические расчеты тепловой изоляции трубопроводов в канале и при бесканальной прокладке выполняются с удовлетворительной для практики точностью по инженерным методикам, учитывающим термическое сопротивление теплоизоляционного слоя и термическое сопротивление стенок канала и грунта, сопротивление теплоотдаче на границе теплоизоляции и стенок канала с воздухом в канале. Термическое сопротивление грунта рассчитывается по формуле Форхгеймера, учитывающей теплопроводность грунта в условиях эксплуатации, диаметр теплопровода и глубину его заложения. При двухтрубной прокладке учитывается взаимное тепловое влияние подающего и обратного теплопровода. В практике проектирования тепловых сетей при двухтрубной прокладке трубопроводов одного диаметра толщина теплоизоляционного слоя обратного трубопровода с учетом монтажных требований принимается равной толщине теплоизоляции подающего трубопровода.

Экономически оптимальная толщина теплоизоляционного слоя для заданного типа прокладки определяется по минимуму суммы капитальных затрат на устройство изоляции и эксплуатационных расходов с учетом стоимости используемых материалов и тепловой энергии в конкретном регионе. Стоимостные показатели рекомендуемых к применению теплоизоляционных материалов являются одним из определяющих факторов при оценке их сравнительной технико-экономической эффективности.

Для проведения расчетов экономически оптимальных толщин теплоизоляционного слоя и норм плотности теплового потока Институтом Теплопроект разработана компъютерная программа на базе программного пакета Excel c использованием элементов языка программирования Visual Basic. На рис. в качестве примера приведены результаты расчета оптимальной толщины теплоизоляционного слоя и оптимальной плотности теплового потока при двухтрубной бесканальной прокладке трубопроводов диаметром 159 мм.

Читайте также:  Стеллаж в интерьере кухни

В связи с изменяющейся конъюнктурой цен на тепловую энергию и теплоизоляционные материалы и значительной их дифференциацией по регионам РФ действующие нормы тепловых потерь по изменению № 1 к СНиП 2.04.14-88 для изолированных трубопроводов и оборудования в настоящее время уже не являются экономически оптимальными и подлежат пересмотру. Программа расчета в настоящее время используется при переработке СНиП 2.04.14-88 для определения норм плотности теплового потока с учетом современной номенклатуры и стоимости теплоизоляционных материалов и изделий. Следует отметить, что в 2002 году Институт ВНИПИЭнергопром при участии Института Теплопроект перерабатывает и СНиП 2.04.07-86 «Тепловые сети».

Введение в действие новых нормативных документов поможет проектным и монтажным организациям, а также потребителям квалифицированно использовать теплоизоляционные материалы в теплоизоляционных конструкциях, повысит энергоэффективность, надежность и долговечность конструкций тепловой изоляции трубопроводов тепловых сетей, что в конечном итоге обеспечит значительную экономию энергетических ресурсов и средств потребителей тепловой энергии.

Совершенствование нормативной базы и методов расчета тепловой изоляции трубопроводов тепловых сетей, расширение номенклатуры и повышение эксплуатационных характеристик применяемых теплоизоляционных материалов является реальным вкладом в реализацию программы энергосбережения в промышленности и ЖКХ.

Для сокращения уровня теплопотерь в системах отопления, которые происходят в холодный период, производится утепление труб. Теплоизоляционные материалы способствуют сбережению необходимой температуры в сети, исключая возникновение конденсата на трубопроводной поверхности и утеплителе. Применение данных типов средств, предотвращает обледенение воды при застое, и замедляет процесс коррозии, которая со временем образуется на компонентах трубопровода, что изготовлены из металла, продлевая срок их службы.

Какими особенностями должен обладать теплоизолятор

При выборе утеплителя необходимо изначально определится с местом, где он будет использоваться, снаружи или внутри дома. На избрание теплоизоляционного материала влияет:

  • диаметр расположенных труб;
  • температура нагрева носителя тепла;
  • условия, при которых совершается эксплуатирование системы отопления.

Разновидности используемых утеплителей отличаются в зависимости от диаметра имеющихся труб. Компании изготовители предлагают полуцилиндры, мягкие рулонные утеплители и цилиндры с определенной формой жесткого выполнения.

Для трубопроводов с мелким диаметром подходят полуцилиндры и цилиндры с характерной жесткостью. Данный вид выполнения обладает пазами, которые значительно упрощают монтажные работы. Этот материал имеет превосходный уровень устойчивость относительно высоких температур, располагая минимальным поглощением воды. Жесткий теплоизолятор постоянно удерживает свою первичную форму, обеспечивая дополнительно сохранность от возможных механических повреждений.

При выборе необходимо обратить внимание на следующие характеристики теплоизолятора:

  • класс возгораемости, особенно следует учитывать при дальнейшем размещении внутри жилых и промышленных сооружений;
  • уровень водопоглощения, от которого напрямую зависит срок эксплуатации материала, ведь при высоком уровне впитывания влаги утеплитель поддается гниению, начиная разлагаться, впоследствии не представляя никакой эффективности;
  • степень устойчивости к воздействию ультрафиолетом, ведь материал с низким показателем, что располагается за пределами дома, начнет поддаваться разрушениям посредством солнечных лучей;
  • уровень теплопроводимости должен быть как можно меньше, ведь при низком показателе теплоизолятор лучше сберегает тепло, позволяя использовать утеплитель с меньшей толщиной слоя.

Разновидности утеплительных материалов

Теплоизоляция труб отопления осуществляется после приобретения материала, но до этого момента необходимо узнать о характеристиках и преимуществах утеплителя, а также области его применения. После этих данных удастся подобрать наиболее подходящий и эффективный вариант.

Пенополиуретан

Данный утеплитель состоит из ребер и стенок, которые образуют цельную конструкцию твердой формы. Он создает теплоизоляционную скорлупу, которая обладает высоким уровнем прочности, при этом достаточно эффективно удерживая тепло внутри отопительной сети. Пенополиуретан обладает такими положительными качествами:

  • не имеет запаха и не является токсичным;
  • не поддается гниению;
  • он экологически безвреден для организма человека;
  • имеет превосходные диэлектрические качества;
  • материал устойчив к разному роду климатических воздействий, благоприятно подходя для использования вне помещения;
  • достаточно крепкий утеплитель, исключающий возможность поломок трубопровода под воздействия механических нагрузок снаружи.

Его единственным ощутимым недостатком является высокая стоимость.

Минвата

Обладая существенным уровнем эффективности, является довольно востребованной среди теплоизоляторов. Она состоит из минеральной ваты, и имеет ряд своих особенностей:

  • вата обладает низким поглощением влаги, благодаря обработке специальными составами в процессе изготовления;
  • высокая степень термоустойчивости, что при нагреве обеспечивает сохранение теплоизоляционных и механических параметров на первичном уровне;
  • является экологически безвредной, не содержа в составе токсических веществ;
  • ей не страшны воздействия со стороны кислот, растворителей и других химических растворов.

Минеральная вата отлично подходит для использования в качестве теплоизолятора для труб отопительных сетей. Она довольно часто устанавливается на трубопроводах, что подвергаются беспрерывному нагреву большой силы.

Вспененный полиэтилен

Не наносит вреда человеческому организму. Он не боится существенных перепадов температур и является устойчивым к воздействию влаги. Утеплитель достаточно популярен среди покупателей. Имеет форму трубки с конкретной толщиной, в которой проделан надрез. Используется в качестве теплоизоляционного материала для труб отопительной сети, а еще при утеплении теплого и холодного водопровода.

Он сберегает свои свойства при использовании совместно с другими стройматериалы, среди которых бетон, известь и прочие.

Пенофол

Этот утеплитель для труб отопления появился на рынке совсем недавно, являясь отражающим теплоизолятором, который состоит из фольги из алюминия и ячеистого полиэтилена. Благодаря 2-м слоям материал обладает превосходными тепловыми показателями, из-за чего он довольно востребован среди покупателей. Фольгоизол имеет ряд особенностей:

  • довольно легкий монтаж, не требующий специальных средств защиты;
  • он экологически безвредный, не выделяющий токсичных веществ;
  • обладает продолжительным сроком службы;
  • имеет широкую сферу использования, подходя для применения как внутри помещения, так и снаружи.
Читайте также:  Статический коэффициент передачи тока биполярного транзистора

Пенофол распространяется в рулонах с разнообразным уровнем плотности полиэтиленового слоя. При выборе толщины следует отталкиваться от будущих условий использования теплоизолятора. Двойной слой способствует удерживанию тепла в закрытом пространстве, достигая максимально допустимой эффективности.

Этапы теплоизоляции труб отопления

Минеральной ватой

Процессы по утеплению отопительного трубопровода минватой необходимо производить в одетых перчатках.

  1. В первую очередь материал режется в соответствии с нужными размерами.
  2. Производиться наматывание на трубу, при этом не нужно ее сильно затягивать.
  3. Через промежутки времени следуют останавливаться, совершая фиксирование посредством изоленты, проволоки или твердой веревки.
  4. Окончив покрытие трубопровода минеральной ватой необходимо приготовить защитную обшивку, которая изготовляется из рубероида или гофрированной фольги, что предварительно нарезается кусками.
  5. Установив оболочку из фольги или рубероида, производится ее закрепление при помощи пластиковых стяжек или веревок.

Пенополиуретановой скорлупой

При небольшом диаметре можно использовать цилиндрическую или полуцилиндрическую форму скорлупы.

  1. На трубопровод одевается теплоизоляционный материал.
  2. Производится его фиксирование посредством клея, скотча, проволоки или самоклеящейся ленты.

Если трубы имеет большой диаметр, то необходимо подобрать скорлупу, которая состоит из нескольких частей. Такая разновидность материала закрепляется по принципу паз-шип.

Произведя качественное утепление отопительных сетей, удастся сохранить значительное количество тепла внутри помещения. По этому, к выбору утеплителя следует подойти ответственно, взвесив все преимущества имеющихся на рынке теплоизоляционных стройматериалов до совершения покупки.

Тепловые сети наружного пролегания или, как их ещё называют воздушные или надземные, прокладываются в случаях необходимости временного строительства теплотрассы (байбас) или в тех местах, где невозможно проложить тепловую сеть под землёй. К примеру, в сейсмоопасных районах. Такие тепловые сети удобны в эксплуатации, быстро строятся и отличаются от других видов тепловых сетей своей низкой стоимостью.

Тепловая изоляция наружных трубопроводов. Теплоизоляционные материалы.

В качестве материалов для изоляции наружных теплотрасс применяются.

1. Теплоизоляция труб минватой.

– минеральная вата практически не гигроскопична – при правильно организованной вентиляции в случае намокания тут же отдаёт излишнюю влагу;
– обеспечивает стабильность своих физико-химических свойств на протяжении всего периода эксплуатации;
– обладает достаточно длительным сроком службы

– во время намокания теряет свои эксплуатационные свойства;
– имеет слабую прочность и уступает по этой характеристике другим теплоизоляционным материалам.

2. Теплоизоляция труб напылением ППУ, использование ППУ-скорлуп.
Достоинства:

– возможность создавать сплошную изоляцию, без стыков;
– является достаточно эластичным материалом;
– обеспечивает возможность быстрого монтажа;
– является биологически нейтральным материалом, не подвержен гниению, устойчив к микроорганизмам и образованию плесени;
– обеспечивает стабильные теплоизоляционные качества в широком диапазоне температур.

– является достаточно горючим материалом и при горении выделяет в окружающее пространства высокотоксичные вещества;
– для напыления требуется специальное оборудование;
– не «дышит».

В последние годы получил распространение метод теплоизоляции труб скорлупами ППУ, но они также нуждаются в дополнительной защите.

3. Теплоизоляция труб пенобетоном.

– высокие теплоизоляционные качества, не уступающие ППУ изоляции;
– монолитность, благодаря которой обеспечивается хорошая антикоррозийная защита из-за отсутствия мостиков холода и невозможность расхищения материала;
– высокая технологичность, которая обеспечивает возможность прокладывания теплотрассы в любой местности;
– высокие адгезионные свойства.

– ограничения по толщине изоляции;
– необходимость защиты высохшей поверхности защитным слоем.

4. Армированный бетон (армобетон).

– обеспечивается эффективная теплоизоляция;
– отсутствует возможность хищений.

– высокая стоимость;
– сложность проведения монтажных работ;
– достаточно высокая хрупкость материала.

Очевидно, что каждый вид теплоизоляционного слоя необходимо защищать. Если этого не сделать, то он со временем под воздействием неблагоприятных внешних факторов будет нарушаться. Практика показывает, что неизолированные теплозащитные слои быстро разваливаются, рассыпаются, сгнивают и приходится проводить работы по их замене. Именно поэтому, сегодня, активно применяется защитная изоляция труб наружная.

Гидроизоляция теплоизоляционного слоя. Обзор основных материалов.

Приходится констатировать, что практически все виды такой изоляции обладают большими недостатками:

стеклоткань — крайне недолговечна, через 1 год теплотрассу, заизолированную стеклотканью, буквально не узнать. Ткань превращается в лохмотья, не говоря уже о полном отсутствии гидроизоляции и защиты от осадков;

рубероид – более долговечен, чем стеклоткань, но чрезмерно пожароопасен, зачастую выгорают целые теплотрассы;

оцинковка – отличный материал, долговечный и негорючий, но его очень быстро воруют. Если тепловая труба проходит вне черты города или вблизи дачных посёлков — то, как правило, оцинкованные листы исчезают на следующее утро после их установки.


По признанию большинства руководителей теплоснабжающих организаций, им приходится восстанавливать теплотрассы сотнями метров, что, в конечном счете, сказывается, как на качестве предоставляемых коммунальных услуг, так и на расходах, связанных с эксплуатацией тепловых сетей, которые превышают все мыслимые пределы.

Однако выход есть. Защита теплоизоляционного слоя наружных теплотрасс может быть выполнена с помощью термоусаживающийся ленты ТИАЛ-ЛЦП . Она не горюча, имеет привлекательный внешний вид, не теряет своих защитных свойств под воздействием низких или высоких температур. В этом случае теплотрасса будет максимально эффективной и долговечной.

Понравилась статья? Поделиться с друзьями:
ТурбоЗайм
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.

Adblock detector