Термическое сопротивление материалов таблица

В моей работе достаточно часто бывает необходимо уточнить теплопроводность различных материалов.
Чтобы каждый раз не искать в справочниках, я решил собрать данные по теплопроводности строительных материалов в таблицу.

Каковую здесь для Вашего удобства и выкладываю. Пользуйтесь! И не забывайте советовать друзьям. 🙂

Ведущие тенденции современного строительства – это возведение домов с максимальной энергоэффективностью. То есть с возможностью создания и поддержания комфортных условий проживания при минимальных затратах энергоносителей. Понятно, что многим нашим строителям, ведущим возведение своих жилых владений самостоятельно, до таких показателей пока далековато, но стремиться к этому – необходимо всегда.

Теплопроводность строительных материалов

Прежде всего, это касается минимизации тепловых потерь через строительные конструкции. Достигается такое снижение эффективной термоизоляцией, выполненной на основании теплотехнических расчетов. Проектирование в идеале должны проводить специалисты, но часто обстоятельства понуждают владельцев жилья и такие вопросы брать в свои руки. Значит, необходимо иметь общие представления о базовых понятиях строительной теплотехники. Прежде всего – что такое теплопроводность строительных материалов, в чем она измеряется, как просчитывается.

Если разобраться с этими «азами», то будет проще всерьез, со знанием дела , а не по наитию, заниматься вопросами утепления своего жилья.

Что такое теплопроводность, какими единицами измерения она описывается?

Если не рассматривать каких-то теоретических условий, то в реальности все физические тела, жидкости или газы обладают способностью к передаче тепла. Иными словами, чтобы было понятнее, если какой-то объект начинают нагревать с одной из сторон, он становится проводником тепла, нагреваясь сам и передавая тепловую энергию дальше. Точно так же – и при охлаждении, только с «обратным знаком».

Даже на простом бытовом уровне всем понятно, что эта способность выражена у разных материалов в очень отличающейся степени. Например, одно дело мешать готовящееся на плите кипящее блюдо деревянной лопаткой, и совсем другое – металлической ложкой, которая практически моментально разогреется до такой температуры, что ее невозможно будет держать в руках. Этот пример наглядно показывает, что теплопроводность металла во много раз выше, чем у дерева.

«Практическое применение» огромной разницы в теплопроводности материалов – пробка, подсунутая под скобу металлической крышки кастрюли. Снять такую крышку с кипящей на плите посуды можно голыми пальцами, не опасаясь ожога.

И таких примеров – масса, буквально на каждом шагу. Например, прикоснитесь рукой к обычной деревянной двери в комнате, и к металлической ручке, прикрученной на ней. По ощущениям – ручка холоднее. Но такого не может быть – все предметы в помещении имеют примерно равную температуру. Просто металл ручки быстрее отвел на себя тепло тела, что и вызвало ощущения более холодной поверхности.

Коэффициент теплопроводности материала

Существует специальная единица, которая характеризует любой материал, как проводник тепла. Называется она коэффициентом теплопроводности, обозначается обычно греческой буквой λ, и измеряется в Вт/(м×℃). (Во многих встречающихся формулах вместо градусов Цельсия ℃ указаны градусы Кельвина, К, но сути это не меняет).

Этот коэффициент показывает способность материала передавать определенное количество тепла на определённое расстояние за единицу времени. Причем, это показатель характеризует именно материал, то есть без привязки к каким бы то ни было размерам.

Такие коэффициенты рассчитаны для практически любых строительных и иных материалов. Ниже в данной публикации приведены таблицы для различных групп – растворов, бетонов, кирпичной и каменной кладки, утеплителей, древесины, металлов и т.д. Даже беглого взгляда на них достаточно, чтобы убедиться, насколько эти коэффициенты могут отличаться.

Очень часто производители стройматериалов того или иного предназначения в череде паспортных характеристик указывают и коэффициент теплопроводности.

Материалы, которые отличаются высокой проводимостью тепла, например, металлы, как раз и находят часто применение в роли теплоотводов или теплообменников. Классический пример – радиаторы отопления, в которых чем лучше их стенки будут передавать нагрев от теплоносителя, тем эффективнее их работа.

А вот для большинства строительных материалов – ситуация обратная. То есть чем меньше коэффициент теплопроводности материала, из которого возведена условная стенка, тем меньше тепла будет терять здание с приходом холодов. Или, тем меньше можно будет сделать толщину стены при одинаковых показателях теплопроводности.

И на титульной картинке к статье, и на иллюстрации ниже показаны весьма наглядные схемы, как будет различаться толщина стены из разных материалов при равных способностях удержать тепло в доме. Комментарии, наверное, не нужны.

Одинаковая термоизоляционная способность – и совершенно разные толщины. Хороший пример по разнице в теплопроводности.

В справочной литературе часто указывается не одно значение коэффициента теплопроводности для какого-то материала, а целых три. (А иногда – и больше, так как этот коэффициент может меняться с изменением температуры). И это – правильно, так как на теплопроводные качества влияют и условия эксплуатации. И в первую очередь – влажность.

Это свойственно большинству материалов – при насыщении влагой коэффициент теплопроводности увеличивается. И если ставится цель выполнить расчеты максимально точно, с привязкой к реальным условиям эксплуатации, то рекомендуется не пренебрегать этой разницей.

Итак, коэффициент может даваться расчетный, то есть для совершенно сухого материала и лабораторных условий. Но для реальных расчетов берут его или для режима эксплуатации А, или для режима Б.

Эти режимы складываются консолидировано из климатических особенностей региона и из особенностей эксплуатации конкретного здания (помещения).

Читайте также:  Сроки посадки луковиц тюльпанов

Тип своей климатической зоны по уровню влажности можно определить по предлагаемой карте-схеме:

Климатические зоны территории России по уровню влажности: 1 –влажная; 2 – нормальная; 3 – сухая.

Особенности влажностного режима помещений определяются по следующей таблице:

Таблица определения влажностного режима помещений

Влажностной режим помещения Относительная влажность внутреннего воздуха при температуре:
до 12°С от 13 до 24°С 25°С и выше
Сухой до 60% до 50% до 40%
Нормальный от 61 до 75% от 51 до 60% от 41 до 50%
Влажный 76% и более от 61 до 75% от 51 до 60%
Мокрый 76% и более 61% и более

Кстати, о влажности.

А хорошо ли вы представляете себе, что такое относительная влажность воздуха. И какой она должна быть в помещениях для поддержания комфортного микроклимата? Если с этим ясности нет – добро пожаловать к специальной публикации нашего портала, посвященной приборам измерения относительной влажности .

Итак, имея данные карты-схемы и таблицы, можно по второй таблице определиться с выбором режима А или Б, от которого будет зависеть реальная величина коэффициента теплопроводности.

Таблица для выбора режима эксплуатации ограждающих конструкций

Влажностной режим помещения (по таблице) Зоны влажности (в соотвествии с картой-схемой)
3 — сухая 2 — нормальная 1 — влажная
Сухой А А Б
Нормальный А Б Б
Влажный или мокрый Б Б Б

Вот по этому режиму и выбирается из табличных данных наиболее близкий к реальности коэффициент теплопроводности.

Таблицы будут приведены ниже, под теоретической частью.

Сопротивление теплопередаче

Итак, коэффициент теплопроводности характеризует сам материал. Но с практической точки зрения, наверное, важнее иметь какую-то величину, которая будет описывать теплопроводные способности конкретной конструкции. То есть уже с учетом особенностей ее строения и размеров.

Такая единица измерения есть, и называется она сопротивлением теплопередаче. Ее можно считать обратной величиной коэффициенту теплопроводности, с одновременным учетом толщины материала.

Обозначается сопротивление теплопередаче (или, как его часто именуют, термическое сопротивление) латинской буквой R. Если «плясать» от коэффициента теплопроводности, то определяется оно по следующей формуле.

R = h/λ

R — сопротивление теплопередаче однослойной однородной ограждающей конструкции, м²×℃/Вт;

h — толщина этого слоя, выраженная в метрах;

λ — коэффициент теплопроводности материала, из которого изготовлена эта ограждающая конструкция, Вт/(м×℃).

Очень часто в строительстве используются многослойные конструкции. В том числе одним из слоев нередко выступает утеплительный материал с очень низким коэффициентом теплопроводности – специально, чтобы максимально повысить значение термического сопротивления. Дело в том, что общее значение суммируется из сопротивлений всех слоев, составляющих ограждающую конструкцию. И к ним добавляется сопротивление приграничных слоев воздуха на внешней и внутренней поверхностях конструкции.

Формула сопротивления перегородки с n-слоев будет такой:

Rsum = R₁ + R₂ + …+Rn + Rai + Rao

Rsum— суммарное термическое сопротивление ограждающей конструкции;

R₁ … Rn— сопротивления слоев, от 1 до n;

Rai— сопротивление пристенного слоя воздуха внутри;

Rao— сопротивление пристенного слоя воздуха снаружи.

Для каждого из слоев сопротивление рассчитывается отдельно, исходя из коэффициента теплопроводности материала и толщины.

Есть специальная методика расчета и коэффициентов воздушных прослоек вдоль стены снаружи и внутри. Но для упрощенных расчётов их вполне можно взять равными суммарно 0,16 м²×℃/Вт – большой погрешности не будет.

Кстати, если в конструкции перегородки предусмотрена воздушная полость, не сообщающаяся с внешним воздухом, то она тоже дает весомую добавку к общему сопротивлению теплопередаче. Значения сопротивления теплопередаче воздушных изолированных прослоек показаны в таблице ниже:

Таблица термических сопротивлений замкнутых воздушных прослоек

Толщина воздушной прослойки, в метрах В и Г ▲ Г▼
tв > 0 ℃ tв 0 ℃ tв 0 ℃ — положительная температура воздуха в прослойке
Карта-схема территории России для определения нормированных значений сопротивлений теплопередаче.

Если не дотягивает – надо принимать меры, усиливать термоизоляцию, чтобы минимизировать потери тепла. И, стало быть, решить обратную задачу. То есть с использованием той же формулы (сопротивление от коэффициента теплопроводности и толщины) найти ту толщину утепления, которая восполнит имеющийся «дефицит» до нормы.

Термоизоляционную конструкцию сразу следует делать с опорой на проведенные теплотехнические расчеты.

Ну а если термоизоляции пока нет, то тут и вовсе все просто. Тогда потребуется определить, какой слой выбранного утеплительного материала обеспечит выход на нормированное значение сопротивления теплопередаче.

Определение уровня тепловых потерь

Еще одна важная задача – это определение величины тепловых потерь через ограждающую конструкцию. Такие вычисления бывают необходимы когда, например, определяется требуемая мощность системы отопления. Как по помещениям — для правильной расстановки обогревательных приборов (радиаторов), так и общая — для выбора оптимальной модели котла.

Каждая конструкция характеризуется своим уровнем тепловых потерь, которые необходимо определять и для правильного планирования системы отопления, и для совершенствования системы термоизоляции.

Дело в том, что это сопротивление описывается еще одной формулой, уже от разницы температур и количества тепла, уходящего через ограждающую конструкцию площадью один квадратный метр.

R = Δt / q

Δt — разница температур по обе стороны конструкции, ℃.

q — удельное количество теряемого тепла, Вт.

То есть если известна площадь ограждающей конструкции и ее термическое сопротивление (определенное, например, через толщину и коэффициент теплопроводности), если известно, для каких условий производится расчет (например, нормальная температура в помещении и самые сильные морозы, присущие данной местности), то можно спрогнозировать и тепловые потери через эту конструкцию.

Q = S × Δt/R

Q — теплопотери через ограждающую конструкцию, Вт.

S — площадь этой конструкции, м².

Такие расчеты в помещении проводятся для всех ограждающих конструкций, контактирующих с холодом, и затем определяется суммарные потери, которые должны компенсироваться системой отопления. Или, если эти потери получаются слишком большими – это становится побудительным мотивом к усовершенствованию системы термоизоляции – что-то с ней не так.

Читайте также:  Снуд двусторонним узором спицами схема

Еще одна ремарка. Это мы говорили о конструкциях, состоящих из нескольких слоев разных строительных и утеплительных материалов. А как быть с окнами? Как для них просчитывается сопротивление теплопередаче?

Методика здесь – несколько иная, и самостоятельно заниматься такими расчетами вряд ли имеет смысл. Можно воспользоваться таблицей, в которой уже имеются готовые значения сопротивления для различных типов конструкций окон.

Таблица приведенных значений сопротивления теплопередаче для окон, остекленных балконных дверей, световых проемов (фонарей)

Материал и схема запонения проема Приведенное термическое Ro, м ² × °С/Вт
Двойное остекление в спаренных переплетах 0.4
Двойное остекление в раздельных переплетах 0.44 0,34*
Тройное остекление в раздельно-спаренных переплетах 0.55 0.46
Однокамерный стеклопакет:
— из обычного стекла 0.38 0.34
— из стекла с твердым селективным покрытием 0.51 0.43
— из стекла с мягким селективным покрытием 0.56 0.47
Двухкамерный стеклопакет:
— из обычного стекла (с межстекольным расстоянием 6 мм) 0.51 0.43
— из обычного стекла (с межстекольным расстоянием 12 мм) 0.54 0.45
— из стекла с твердым селективным покрытием 0.58 0.48
— из стекла с мягким селективным покрытием 0.68 0.52
— из стекла с твердым селективным покрытием и заполнением аргоном 0.65 0.53
Обычное стекло и однокамерный стеклопакет в раздельных переплетах:
— из обычного стекла 0.56
— из стекла с твердым селективным покрытием 0.65
— из стекла с мягким селективным покрытием 0.72
— из стекла с твердым селективным покрытием и заполнением аргоном 0.69
Обычное стекло и двухкамерный стеклопакет в раздельных переплетах:
— из обычного стекла 0.68
— из стекла с твердым селективным покрытием 0.74
— из стекла с мягким селективным покрытием 0.81
— из стекла с твердым селективным покрытием и заполнением аргоном 0.82
Два однокамерных стеклопакета в спаренных переплетах 0.7
Два однокамерных стеклопакета в раздельных переплетах 0.74
Четырехслойное остекление в двух спаренных переплетах 0.8
Блоки стеклянные пустотные (с шириной кладочных швов 6 мм) размером:
-200×200 ×100 мм 0,31 (без переплета)
-250×250 ×100 мм 0,33 (без переплета)
Примечания:
Д и ПВХ — переплеты из дерева или пластика (поливинилхлорида)
А — переплеты из алюмииия
* — перепеты из стали
все указанные значения даны для площади остекления 75% от площади светового проема

Понятно, что тепловые потери будут считаться, исходя из площади остекления и разницы температур.

Надо заметить, что профессиональные теплотехнические расчеты учитывают еще и множество различных поправочных коэффициентов, в том числе на инсоляцию (воздействие солнечных лучей), светопоглощающие и отражающие свойства поверхностей, неоднородность конструкций и другие. Но для самостоятельной первичной оценки достаточно и того алгоритма, что приведен выше.

Для любителей же более обстоятельного подхода можно порекомендовать следующий видеосюжет:

Видео: Алгоритмы профессионального расчета сопротивления теплопередаче стен

Мы же завершим публикацию онлайн-калькулятором, который вполне позволяет на бытовом уровне решить ряд задач, о которых шла речь выше.

При строительстве частных и многоквартирных домов приходится учитывать множество факторов и соблюдать большое количество норм и стандартов. К тому же перед строительством создается план дома, проводятся расчеты по нагрузке на несущие конструкции (фундамент, стены, перекрытия), коммуникациям и теплосопротивлению. Расчет сопротивления теплопередаче не менее важен, чем остальные. От него не только зависит, насколько будет дом теплым, и, как следствие, экономия на энергоносителях, но и прочность, надежность конструкции. Ведь стены и другие элементы ее могут промерзать. Циклы заморозки и разморозки разрушают строительный материал и приводят к обветшалости и аварийности зданий.

Теплопроводность

Любой материал способен проводить тепло. Этот процесс осуществляется за счет движения частиц, которые и передают изменение температуры. Чем они ближе друг к другу, тем процесс теплообмена происходит быстрее. Таким образом, более плотные материалы и вещества гораздо быстрее охлаждаются или нагреваются. Именно от плотности прежде всего зависит интенсивность теплопередачи. Она численно выражается через коэффициент теплопроводности. Он обозначается символом λ и измеряется в Вт/(м*°C). Чем выше этот коэффициент, тем выше теплопроводность материала. Обратной величиной для коэффициента теплопроводности является тепловое сопротивление. Оно измеряется в (м2*°C)/Вт и обозначается буквой R.

Применение понятий в строительстве

Для того чтобы определить теплоизоляционные свойства того или иного строительного материала, используют коэффициент сопротивления теплопередаче. Его значение для различных материалов дается практически во всех строительных справочниках.

Так как большинство современных зданий имеет многослойную структуру стен, состоящую из нескольких слоев различных материалов (внешняя штукатурка, утеплитель, стена, внутренняя штукатурка), то вводится такое понятие, как приведенное сопротивление теплопередаче. Оно рассчитывается так же, но в расчетах берется однородный аналог многослойной стены, пропускающий то же количество тепла за определенное время и при одинаковой разности температур внутри помещения и снаружи.

Приведенное сопротивление рассчитывается не на 1 м кв., а на всю конструкцию или какую-то ее часть. Оно обобщает показатель теплопроводности всех материалов стены.

Тепловое сопротивление конструкций

Все внешние стены, двери, окна, крыша являются ограждающей конструкцией. И так как они защищают дом от холода по-разному (имеют различный коэффициент теплопроводности), то для них индивидуально рассчитывается сопротивление теплопередаче ограждающей конструкции. К таким конструкциям можно отнести и внутренние стены, перегородки и перекрытия, если в помещениях имеется разность температур. Здесь имеются в виду помещения, в которых разность температур значительная. К ним можно отнести следующие неотапливаемые части дома:

  • Гараж (если он непосредственно примыкает к дому).
  • Прихожая.
  • Веранда.
  • Кладовая.
  • Чердак.
  • Подвал.

В случае если эти помещения не отапливаются, то стену между ними и жилыми помещениями необходимо также утеплять, как и наружные стены.

Читайте также:  Станок с чпу числовое программное управление

Тепловое сопротивление окон

В воздухе частицы, которые участвуют в теплообмене, находятся на значительном расстоянии друг от друга, а следовательно, изолированный в герметичном пространстве воздух является лучшим утеплителем. Поэтому все деревянные окна раньше делались с двумя рядами створок. Благодаря воздушной прослойке между рамами сопротивление теплопередаче окон повышается. Этот же принцип применяется для входных дверей в частном доме. Для создания подобной воздушной прослойки ставят две двери на некотором расстоянии друг от друга или делают предбанник.

Такой принцип остался и в современных пластиковых окнах. Единственное отличие – высокое сопротивление теплопередачи стеклопакетов достигается не за счет воздушной прослойки, а за счет герметичных стеклянных камер, из которых откачан воздух. В таких камерах воздух разряжен и практически нет частиц, а значит, и передавать температуру нечему. Поэтому теплоизоляционные свойства современных стеклопакетов намного выше, чем у старых деревянных окон. Тепловое сопротивление такого стеклопакета – 0,4 (м2*°C)/Вт.

Современные входные двери для частных домов имеют многослойную структуру с одним или несколькими слоями утеплителей. К тому же дополнительное теплосопротивление дает установка резиновых или силиконовых уплотнителей. Благодаря этому дверь становится практически герметичной и установка второй не требуется.

Расчет теплового сопротивления

Расчет сопротивления теплопередаче позволяет оценить потери тепла в Вт и рассчитать необходимое дополнительное утепление и потери тепла. Благодаря этому можно грамотно подобрать необходимую мощность отопительного оборудования и избежать лишних трат на более мощное оборудование или энергоносители.

Для наглядности рассчитаем тепловое сопротивление стены дома из красного керамического кирпича. Снаружи стены будут утеплены экструдированным пенополистиролом толщиной 10 см. Толщина стен будет два кирпича – 50 см.

Сопротивление теплопередаче вычисляется по формуле R = d/λ, где d – это толщина материала, а λ – коэффициент теплопроводности материала. Из строительного справочника известно, что для керамического кирпича λ = 0,56 Вт/(м*°C), а для экструдированного пенополистирола λ = 0,036 Вт/(м*°C). Таким образом, R (кирпичной кладки) = 0,5 / 0,56 = 0,89 (м 2 *°C)/Вт, а R (экструдированного пенополистирола) = 0,1 / 0,036= 2,8 (м 2 *°C)/Вт. Для того чтобы узнать общее теплосопротивление стены, нужно сложить эти два значения: R = 3,59 (м 2 *°C)/Вт.

Таблица теплового сопротивления строительных материалов

Всю необходимую информацию для индивидуальных расчетов конкретных построек дает представленная ниже таблица сопротивления теплопередаче. Образец расчетов, приведенный выше, в совокупности с данными таблицы может также использоваться и для оценки потери тепловой энергии. Для этого используют формулу Q = S * T / R, где S – площадь ограждающей конструкции, а T – разность температур на улице и в помещении. В таблице приведены данные для стены толщиной 1 метр.

Материал R, (м 2 * °C)/Вт
Железобетон 0,58
Керамзитобетонные блоки 1,5-5,9
Керамический кирпич 1,8
Силикатный кирпич 1,4
Газобетонные блоки 3,4-12,29
Сосна 5,6
Минеральная вата 14,3-20,8
Пенополистирол 20-32,3
Экструдированный пенополистирол 27,8
Пенополиуретан 24,4-50

Теплые конструкции, методы, материалы

Для того чтобы повысить сопротивление теплопередаче всей конструкции частного дома, как правило, используют строительные материалы с низким показателем коэффициента теплопроводности. Благодаря внедрению новых технологий в строительстве таких материалов становится все больше. Среди них можно выделить наиболее популярные:

  • Дерево.
  • Сэндвич-панели.
  • Керамический блок.
  • Керамзитобетонный блок.
  • Газобетонный блок.
  • Пеноблок.
  • Полистиролбетонный блок и др.

Дерево является весьма теплым, экологически чистым материалом. Поэтому многие при строительстве частного дома останавливают выбор именно на нем. Это может быть как сруб, так и оцилиндрованное бревно или прямоугольный брус. В качестве материала в основном используется сосна, ель или кедр. Тем не менее это довольно капризный материал и требует дополнительных мер защиты от атмосферных воздействий и насекомых.

Сэндвич-панели – это довольно новый продукт на отечественном рынке строительных материалов. Тем не менее его популярность в частном строительстве очень возросла в последнее время. Ведь его основными плюсами является сравнительно невысокая стоимость и хорошее сопротивление теплопередаче. Это достигается за счет его строения. С наружных сторон находится жесткий листовой материал (ОСП-плиты, фанера, металлический профиль), а внутри — вспененный утеплитель или минеральная вата.

Строительные блоки

Высокое сопротивление теплопередаче всех строительных блоков достигается за счет наличия в их структуре воздушных камер или вспененной структуры. Так, например, некоторые керамические и другие виды блоков имеют специальные отверстия, которые при кладке стены идут параллельно ей. Таким образом, создаются закрытые камеры с воздухом, что является довольно эффективной мерой препятствия теплопередачи.

В других строительных блоках высокое сопротивление теплопередачи заключается в пористой структуре. Это может достигаться различными методами. В пенобетонных газобетонных блоках пористая структура образуется благодаря химической реакции. Другой способ – это добавление в цементную смесь пористого материала. Он применяется при изготовлении полистиролбетонных и керамзитобетонных блоков.

Нюансы применения утеплителей

Если сопротивление теплопередачи стены недостаточно для данного региона, то в качестве дополнительной меры могут применяться утеплители. Утепление стен, как правило, производится снаружи, но при необходимости может применяться и по внутренней части несущих стен.

На сегодняшний день существует множество различных утеплителей, среди которых наибольшей популярностью пользуются:

  • Минеральная вата.
  • Пенополиуретан.
  • Пенополистирол.
  • Экструдированный пенополистирол.
  • Пеностекло и др.

Все они имеют очень низкий коэффициент теплопроводности, поэтому для утепления большинства стен толщины в 5-10 мм, как правило, достаточно. Но при этом следует учесть такой фактор, как паропроницаемость утеплителя и материала стен. По правилам, этот показатель должен возрастать наружу. Поэтому утепление стен из газобетона или пенобетона возможно только с помощью минеральной ваты. Остальные утеплители могут применяться для таких стен, если делается специальный вентиляционный зазор между стеной и утеплителем.

Заключение

Теплосопротивление материалов – это важный фактор, который следует учитывать при строительстве. Но, как правило, чем стеновой материал теплее, тем меньше плотность и прочность на сжатие. Это следует учитывать при планировке дома.

Понравилась статья? Поделиться с друзьями:
ТурбоЗайм
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.

Adblock detector