Строительные материалы из керамики

Технология керамики ‑ наука о совокупности технологических методов и последовательности выполнения процессов изготовления керамических изделий, их практическом воплощении.

Керамика (гр. keramike ‑ гончарное искусство, keramos ‑ глина) ‑ искусственные изделия и материалы, полученные спеканием глин и их смесей с минеральными добавками.

Керамические изделия характеризуются хорошими эксплуатационными, механическими, химическими свойствами. Эти свойства обусловливают долговечность керамических изделий в строительных конструкциях. Вместе с тем керамические изделия имеют следующие недостатки: сравнительно высокие плотность и теплопроводность.

Керамика является самым древним из искусственных материалов. Ее технология в последнее время бурно развивается ‑ на керамической основе создаются так называемые композиционные материалы (см. подробнее параграф 15.1).

Основными классификационными признаками керамических изделий являются их структура и назначение. По структуре керамика может быть:

• грубая (главным образом строительная керамика);

• тонкая с однородной мелкозернистой структурой (главным образом фарфор);

• пористая с мелкозернистой структурой (фаянс, майолика и др.);

• высокопористая (теплоизоляционные керамические материалы).

По назначениюкерамику подразделяют на следующие группы:

• строительная (кирпич, панели, перекрытия, черепица, об лицовочные плитки и др.);

• бытовая (посуда, художественные изделия и др.);

• санитарно-техническая (умывальники, ванны, унитазы и др.);

• химически стойкая (трубы, детали химической аппаратуры);

• электротехническая, радиотехническая (например, керамические конденсаторы и изоляторы);

• теплоизоляционная (пенокерамика, ячеистая керамика и др.);

• огнеупорная (например, шамотный кирпич для футеровки печей, вагранок);

• керамика для подземных коммуникаций (канализационные и дренажные трубы);

• заполнители легких бетонов (например, керамзит, аглопорит).

Сырьевые материалы, используемые для производства керамических изделий, подразделяют на пластичные и непластичные.

Основным пластичным материалом является глина — осадочная горная порода, состоящая в основном из глинистых минералов (каолинит, монтмориллонит, гидрослюды и др.). Разновидности глины выделяют по преобладанию того или иного глинистого минерала. Главные компоненты глины: S1O2 (30‑ 70 %), А12О3 (10‑40 %) и Н2О (5‑10 %).

Основными непластичными материалами являются: отощающие материалы ‑ песок, шлак (для снижения пластичности и усадки глин); флюсы ‑ мрамор, доломит (для снижения температуры спекания глин); порообразугощие материалы ‑ мел, древесные опилки, зола (для снижения теплопроводности); специальные добавки (например, красители).

Вне зависимости от вида и назначения керамических изделий в технологии керамики выделяют следующие основные стадии:

• подготовка глиняной массы;

• сушка отформованных изделий;

• обжиг высушенных изделий;

• поверхностная обработка керамических изделий.

Керамические заводы, как правило, строятся вблизи месторождений глины, поэтому карьер является составным элементом структуры предприятия.

Карьерные работы включают в себя добычу глины, транспортирование и хранение ее запаса на зимний период, когда добыча глины не производится. Таким образом, на данной стадии используются преимущественно механические процессы.

Подготовка глиняной массы заключается в разрушении естественной структуры глины, удалении твердых каменистых включений, измельчении и увлажнении для получения однородной массы с требуемыми формовочными свойствами. На этой стадии используются в основном механические и гидромеханические процессы.

В зависимости от свойств исходного сырья и вида изготовляемой продукции различают следующие способы подготовки глиняной массы: полусухой, пластический и мокрый (шликерный). При полусухом способе сырьевые материалы после предварительного дробления выдерживают в сушильном барабане (до остаточной влажности 6‑8 %), затем измельчают, просеивают, увлажняют (до влажности 8‑12 %) и тщательно перемешивают. Полусухой способ подготовки глиняной массы используется в основном при производстве плиток для облицовки стен, полов.

При пластическом способе подготовки глиняной массы исходное сырье дробят, тонко измельчают и увлажняют до получения однородной пластичной массы влажностью 18‑22 %. Этот способ применяется при производстве глиняного кирпича, черепицы, труб.

При шликерном способе подготовки глиняной массы высушенные сырьевые материалы измельчают в порошок и смешивают с водой до получения однородной массы ‑ шликера, который используют для получения изделий способом литья (санитарно-технические изделия, декоративная керамика и др.).

Формование заключается в придании керамическим изделиям требуемых формы и размеров. При полусухом и пластическом способах подготовки глиняной массы оно осуществляется преимущественно на прессах, при шликерном ‑ в заранее подготовленных гипсовых формах методом литья.

При производстве бытовой керамики в условиях единичного производства используется вращающийся вокруг вертикальной оси гончарный круг, на котором формование асимметричных изделий осуществляется методом пластической деформации (под действием пальцев рук).

Сушка‑ обязательная промежуточная стадия технологического процесса производства керамических изделий, по своей сущности являющаяся массообменным процессом. Если сырые изделия сразу после формования подвергнуть обжигу, то они растрескаются. Сушка в естественных условиях производится на стеллажах в помещениях или под навесами вне их. При серийном и массовом производстве ускорение процесса сушки керамических изделий достигается путем использования либо камерных сушилок периодического действия, либо туннельных сушилок непрерывного действия.

По мере удаления влаги при сушке частицы материала сближаются и происходит его усадка. Для получения высококачественных изделий процесс сушки должен осуществляться по строгому режиму согласно определенному графику в зависимости от вида керамических изделий. Продолжительность процесса сушки составляет от 24 ч до 3 сут. Изделия необходимо высушить до остаточной влажности, не превышающей 5 %, во избежание неравномерной усадки и растрескивания при обжиге.

Обжиг является наиболее ответственной стадией производства керамических изделий, так как в процессе обжига формируется их структура, определяющая наиболее важные свойства изделий: прочность, водостойкость, морозостойкость и др. В процессе обжига происходят сложные физико-химические превращения в исходном материале (см. параграф 4.3).

Обжиг производят преимущественно в туннельных печах непрерывного действия, в которых навстречу изделиям, перемещаемым вагонетками, подаются дымовые газы. Условно печь делят на три зоны ‑ подогрева, обжига и охлаждения.

Вначале происходит досушивание керамических изделий дымовыми газами, отходящими из зоны обжига (при 100‑200 °С). При температуре 200 — 800 ° С выделяется летучая часть органических примесей глины и выгорающих добавок, введенных в состав исходной сырьевой смеси. В интервале температур 550‑800 °С происходят дегидратация (полное обезвоживание) глинистых минералов и удаление химически связанной воды. При этом разрушается кристаллическая решетка наиболее легкоплавких глинистых минералов, и глина теряет пластичность. Легкоплавкие составляющие глины расплавляются, и частицы глины в местах их контакта сближаются, происходит усадка изделий. Дальнейший подъем температуры до максимальной обусловливает существенные необратимые изменения

в структуре керамики: глина необратимо переходит в камне-видное состояние. После достижения максимальной температуры обжига изделия подвергают изотермической выдержке для выравнивания температуры по всей их толщине. Последующее охлаждение ведут очень медленно, постепенно снижая температуру до 500‑600 °С. Затем вагонетки с изделиями обдувают холодным воздухом.

Поверхностная обработкакерамических изделий предназначена главным образом для придания им привлекательного вида, декорирования и повышения стойкости к внешним воздействиям. При этом поверхность некоторых керамических изделий перед обжигом покрывают глазурью ‑ стекловидным покрытием толщиной 0,15‑0,8 мм.

Для технологии керамики характерны высокая энергоемкость и капиталоемкость производства и в то же время высокий уровень его механизации и автоматизации.

Основными направлениями развития технологии керамики являются следующие:

• улучшение технологии производства керамических изделий за счет совершенствования процессов подготовки, сушки и обжига, разработки эффективных методов формования, использования малоотходных и энергосберегающих процессов (революционное развитие технологии);

• увеличение единичных мощностей используемого оборудования и создание непрерывных технологических линий по производству керамических изделий (эволюционное развитие технологии);

Читайте также:  Снятие вина с осадка первый раз

• повышение уровня механизации и автоматизации трудоемких стадий производства керамических изделий (рационалистическое развитие технологии).

Общие сведения о керамических строительных материалах и изделиях

Классификация керамических строительных материалов и изделий. Свойства, применение

Сырье для производства керамических материалов и изделий. Классификация, технологические свойства

Производство керамических строительных материалов и изделий. Общие технологические процессы

Керамические материалы – искусственные каменные материалы, полученные из природных глин или глиняных смесей с минеральными добавками путем формования, сушки и последующего обжига. Слово «керамика» (греч. ceramos) означает обожженная глина. Из нее изготовляли обожженный кирпич, кровельную черепицу, водопроводные трубы, архитектурные детали. Керамические материалы являются самыми древними из всех искусственных каменных материалов. Черепки грубых горшечных изделий находят на месте поселений каменного века. Следы древней керамики (посуда, вазы и т.п.) сохранились в Древнем Египте, Греции. На Руси старинные русские соборы X-XV вв. (Владимирский, Новгородский, церковь в Коломенском и храм Василия Блаженного (Покровский собор, 1561 г.). В Москве, при строительстве которого широко использовали цветной и обыкновенный кирпичи, черепицу и другие керамические изделия).

Большое развитие керамика получила в Средней Азии, Древней Индии, Китае и Японии. У греков и римлян из глины изготовляли обожженный кирпич, кровельную черепицу, архитектурные детали и другие изделия, глинобитные жилища (IV-III тыс. до н.э.).

Высокими художественными достоинствами отмечено и русское изразцовое искусство XV-XVIII вв. Терракотовые и глазурованные образцы изготовляли в Москве, Ярославле. Терракота (от итал. terra– земля, cotta–обожженная) – неглазурованная однотонная керамика с характерным цветным пористым черепком.

Кирпич появился более 5000 лет назад и как конструкционный материал впервые стали применять в Древнем Египте и Вавилонии. И в настоящее время, в период бурного развития строительной промышленности, глиняный кирпич не потерял своего значения. Повсеместное распространение исходного сырья – глины, простота изготовления и длительный срок службы позволяют считать его одним из основных местных строительных материалов.

Классификация керамических строительных материалов и изделий. Свойства, применение

Керамические строительные материалы и изделия по их назначению в отделке зданий и отдельных элементах подразделяются на:

фасадные изделия – лицевой кирпич, разного рода плитки;

изделия для внутренней отделки – глазурованные и неглазурованные плитки, фасонные изделия, ковровая и мозаичная керамика;

плитку для пола;

изделия из фаянса и фарфора декоративного назначения.

Отделочная керамика (облицовочные плитки для стен и полов, керамическая ковровая мозаика, архитектурные детали, терракота, майолика) обладает ценными универсальными потребительными свойствами:

стойкость к агрессивным воздействиям;

простота технологических приёмов изготовления;

разнообразие сырьевых материалов;

Керамические изделия обладают различными свойствами, которые определяются составом исходного сырья, способами его переработки, а также условиями обжига.

Применение – во всех элементах зданий и сооружений, в сборном керамическом домостроении, в строительстве стеновых керамических изделий, для изготовления фасадной керамики, пористых заполнителей для бетонов, санитарно-технической керамики, плитки для полов, керамических канализационных труб и др.

Таким образом, керамические материалы отвечают современным тенденциям строительной техники, являются конкурентоспособными с другими строительными материалами такого же назначения. Материал, из которого состоят керамические изделия, в технологи керамики называют керамическим черепком.

В зависимости от пористости структуры керамические строительные изделия делят на две группы:

пористые (водопоглощением по массе 5 и более 5% — керамический кирпич и камни, черепицу кровельную, облицовочные плитки и керамические трубы);

плотные (водопоглощением по массе – менее 5% — плитки для полов и дорожный кирпич);

Санитарно-техническая керамика может быть пористой (фаянс) и плотной(санитарный фарфор).

Сырье для производства керамических материалов и изделий. Классификация, технологические свойства

Глина – сырьё для производствакерамических материалов

Качество сырьевых материалов определяется минералогическим составом, физическими свойствами, зависящими от месторождения и условиями залегания. Основными сырьевыми материалами для производства керамических изделий являются глины и каолины; в качестве вспомогательных сырьевых материалов для улучшения технологических свойств используют пески кварцевые и шлаковые, шамот, выгорающие добавки органического происхождения (древесные опилки, угольная крошка и т.п.).

Глина – один из наиболее распространенных видов осадочных горных пород полиминерального состава. Кислород, кремний и алюминий по своей общей массе составляют около 90% в составе земной коры, потому подавляющую часть минералов составляют алюмосиликаты, силикаты и кварц основа встречающихся в природе керамических сырьевых минералов. Размеры глинистых частиц колеблются практически от коллоидной дисперсности до 5 мкм. Основным минералом каолиновых глин является минерал каолинит.

Глины – землистые осадочные горные породы, состоящие из глинистых минералов со значительными примесями: каолинита, галлуазита, монтмориллита, бейделлита, частиц кварца, полевых шпатов, гидрослюд, гидратов окиси железа, алюминия, карбонатов магния, кальция и др.

Пластичность глинистого сырья, определяемая числом пластичности (по раскатыванию глиняного жгута диаметром 3 мм), зависит от содержания глинистых минералов и влажности массы. В зависимости от содержания глинистых минералов глины делятся: на:

жирные (более 60%);

тяжелые суглинки (20. 30%);

средние и легкие суглинки (менее 20%).

По пластичности глинистые материалы подразделяются по числу пластичности на:

высокопластичные (менее 25);

среднепластичные (15. 25);

умеренно-пластичные (7. 15);

малопластичные (3. 7).

Вода, адсорбированная поверхностью глинистых частиц в процессе приготовления сырьевой смеси, играет роль гидродинамической смазки, что обеспечивает во многом ее пластические характеристики. Вместе с тем удаление воды, как из самих глинистых частиц, так и с их поверхности в процессе сушки и обжига вызывает явление воздушной и огневой усадки.

Усадочные деформации являются причиной возникновения в изделии внутренних напряжений, что в конечном итоге влияет на их качественные показатели.

Для уменьшения усадки при сушке и обжиге, а также для предотвращения образования трещин в пластичные глины вводят искусственные или природные отощающие добавки. К их числу относятся дегидратированная глина, шамот, котельные шлаки, золы, кварцевые пески и т.д.

Введение в состав сырьевой смеси плавней обеспечивает более низкую температуру ее спекания. К плавням относят полевые шпаты, пегматит, доломит, тальк, магнезит, карбонаты бария и стронция, нефелиновые сиениты (для фаянсовых масс). Искусственный керамический материал, отформованный из глинистого сырья, получается в результате сложных физических, химических и физико-химических изменений, происходящих при обжиге, т.е. при воздействии высоких температур.

Каолины – это чистые глины, состоящие преимущественно из глинистого минерала каолинита (Al2O3·2SiO2·2H2O). Каолины огнеупорны, малопластичны, имеют белую окраску. Их применяют для производства фарфора, фаянса и тонких облицовочных изделий, так как после обжига получается белый черепок.

Обычные глины отличаются от каолинов большим разнообразием минералогического, химического и гранулометрического состава. Изменения химического состава заметно отражаются на свойствах глин. С увеличением А12O3 повышается пластичность глин и огнеупорность, а с повышением содержания SiO2 пластичность глин снижается, увеличивается пористость, снижается прочность обожженных изделий. Присутствие оксидов железа снижает огнеупорность глины, наличие щелочей ухудшает формуемость изделий.

При изготовлении керамических материалов основными технологическим свойствами глин являются:

воздушная и огневая усадка;

цвет керамического черепка

Пластичность глин – способность глиняного теста под действием внешних сил принимать заданную форму и сохранять ее после прекращения действия этих сил. По степени пластичности глины делят на:

высоко пластичные, или «жирные»,

малопластичные, или «тощие».

Жирные глины хорошо формуются, но, высыхая, дают трещины и значительную усадку. Тощие глины формуются плохо. Для повышения пластичности глин применяют операцию вылеживания их во влажном состоянии на воздухе, вымораживание, гноение в темных подвалах, при этом происходит разрыхление материала и увеличивается ее дисперсность. Пластичность можно также повысить добавлением высокопластичных глин. Самый распространенный способ повышения пластичности — их механическая обработка. Для понижения пластичности глин вводят добавки различных непластичных материалов (отощающие добавки).

Читайте также:  Сливной клапан для водонагревателя

Усадка – уменьшение линейных размеров и объема глиняного сырца при его сушке (воздушная усадка) и обжиге (огневая усадка). Усадку выражают в процентах от первоначального размера изделия.

Воздушная усадка происходит при испарении воды из сырца в процессе его сушки на воздухе и составляет, 2. 10%.

Огневая усадка получается из-за того, что в процессе обжига легкоплавкие составляющие глины расплавляются и частицы глины в местах их контакта сближаются. Огневая усадка составляет 2. 8%.

Полная усадка определяется как арифметическая сумма величин воздушной и огневой усадок. Значение полной усадки колеблется в пределах 4. 18%. Полную усадку учитывают при формовании изделий.

Огнеупорность – свойство глины выдерживать действие високих температур без деформации. По температуре плавления глины разделяются на:

легкоплавкие (с температурой плавления ниже 1350°С),

тугоплавкие (с температурой плавления 1350. 1580°С)

огнеупорные (свыше 1580°С).

Огнеупорные глины применяют для производства огнеупорных изделий, а также фарфора и фаянса. Тугоплавкие глины применяют в производстве плиток для полов, канализационных труб. Легкоплавкие глины используют для производства керамического кирпича, пустотелых камней, черепицы.

Цвет черепка после обжига зависит от состава и количества примесей в глине. Каолины дают черепок белого цвета. На цвет обожженных глин оказывает влияние содержание оксидов железа, которые придают окраску от светло-желтой до темно-красной и бурой. Оксиды титана вызывают синеватую окраску черепка. Используя минеральные красители, можно получать керамические изделия различных цветов и оттенков.

Спекаемостъю глин называют ее способность уплотняться при обжиге и образовывать камневидный материал. При спекании увеличивается прочность и уменьшается водопоглощение изделий.

Производство керамических строительных материалов и изделий. Общие технологические процессы

Эксплуатационные характеристики керамических изделий во многом определяются как составом сырьевых материалов, так и технологическими приемами их изготовления. В производстве обширной номенклатуры современной строительной керамики используются родственные технологические процессы, позволяющие кратко обобщить основы производства керамических материалов.

Можно выделить следующие общие технологические процессы:

2. подготовка сырьевой массы;

3. формование изделия (сырца);

Эти пять стадий производства являются общими для всех видов керамических изделий. Для отдельных видов изделий могут применять различные способы формования (кирпич пластического и полусухого формования), разные способы сушки (воздушная или в сушильных камерах), а также дополнительные производственные процессы – покрытие изделий глазурью или ангобом.

Добыча глины: Добыче сырья предшествует геологическая разведка, определение химического и минерального состава, физических свойств сырья, полезной толщи месторождения, его однородности и характера залегания, объема работ и т.д. Глина обычно залегает – на небольшой глубине. Разрабатывается сырье в карьерах открытым способом – одноковшовыми, многоковшовыми или роторными экскаваторами. Заводы по производству керамических изделий обычно строят вблизи месторождений глин, т.е. карьер является составной частью завода. Добычу глины стремяться осуществлять в теплое время года, создавая запас материала на складе для работы зимой. Транспортируют глину из карьера на заводы рельсовым транспортом в опрокидных вагонетках, ленточными транспортерами и автосамосвалами.

Подготовка сырьевой массы. Добытая в карьере и доставленная на завод глина непригодна для формования изделий, и нужно разрушить природную структуру глины, очистить ее от вредных примесей, измельчить крупные фракции, смешать с добавками, увлажнить ее, чтобы получилась удобоформуемая масса. В крытых складах или на открытых площадках глинистые материалы выдерживаются до двух лет. За это время разлагаются органические остатки и под действием атмосферных факторов(увлажнения и высушивания, замораживания и оттаивания) и предварительной обработки (рыхления, камнеудаления и т.д.) удается достичь сравнительной однородности массы, как по гранулометрическому, так и по минеральному составу. Дальнейшая подготовка массы осуществляется в зависимости от вида изделий и предполагаемой технологии их изготовления.

На этом этапе с помощью камневыделительных машин, вальцов, мельниц различного вида, дозаторов добавок и воды, глиномешалок или диспергаторов удается получить массу, пригодную для формования изделий. Формовочную массу готовят пластическим, полусухим или мокрым способами в зависимости от свойств сырьевых материалов и требований к качеству получаемого изделия.

Формование изделий – одно из важных операций при изготовлении керамических изделий. Способы изготовления определяются формовочными свойствами сырьевой смеси и, прежде всего, пластичностью, которая многом зависит от количества воды в формовочной смеси. В зависимости от влажности формовочной массы способы подразделяются на сухой, полусухой, пластический и литьевой(шликерный).

При сухом способе пресспорошок имеет влажность 2…6%, при которой используют механические или гидравлические прессы, развивающие давление свыше 40 МПа. Данным способом изготавливают плотные керамические изделия: плитку для полов, некоторые виды кирпича, изделия из фаянса и фарфора.

Полусухой способ предусматривает использование рабочих смесей с влажностью 8. 12%. Поэтому способу изготавливается кирпич, фасонне изделия, плитка.

Наиболее экономичным и распространенным является способ пластического формования при влажности массы 18. 24%. Основной механизм, используемый в этом случае,– ленточный пресс. Шнеквал пресса с переменным шагом лопастей перемалывает массу, одновременно уплотняя её к выходному отверстию. Вакуумирование на последней стадии прессования позволяет дополнительно уплотнить массу. Выходное отверстие пресса– мундштук обеспечивает получение непрерывного глиняного бруса необходимых геометрических размеров. Форма мундштука и его размеры определяют вид выпускаемых изделий: кирпич, камни, плитки, черепица, трубы, фасонные изделия. Установленные перед мундштуком пустотообразователи позволяют формовать дырчатые изделия, с щелевыми пустотами и т.д.

Литьевым способом изготавливают керамические изделия сложной геометрической формы: сантехнические изделия (раковины, унитазы, писсуары и т.д.), некоторые декоративные изделия, плитку для внутренней отделки помещений. Компоненты рабочей смеси тщательно размешивают, дозируют, перемешивают с водой. Влажность массы в этом случае от 40 до 60%. Подготовленная таким образом однородная масса выливаетс в гипсовые формы. Развитая микропористая структура гипсового камня обуславливает удаление части воды в пристеночных слоях. В результате в зависимости от времени достигается необходимая толщина уплотненного слоя. Избыток смеси после этого удаляется. После сушки отдельные эле-менты монтируются.

Сушка и обжиг изделий. В зависимости от способа изготовления влажность сырьевых смесей колеблется в очень больших пределах от 2 до 60%. Удаление воды из отформованных изделий сопровождается усадочными деформациями и, соответственно, возникновением внутренних напряжений. Последние при жестких режимах сушки могут являться причиной искривления, появления трещин, снижающих качественные показатели изделий. Сушку изделий производят до остаточной влажности 4. 6% в туннельных или камерных сушилках. Температура теплоносителя 120. 150°С.

Обжиг керамических изделий – один из наиболее ответственных технологических этапов, во многом определяющих свойства получаемых материалов.

В производстве строительной керамики в основном используют туннельные печи непрерывного действия высушенные изделия на обжиговых вагонетках, передвигаясь по туннелям, постепенно нагреваются до температуры спекания в зоне сгорания топлива, а затем медленно охлаждаются встречным потоком воздуха.

При температуре порядка 100. 120 °С удаляется физически связанная свободная вода. При температуре 450 . 600 °С глинистые вещества необратимо теряют пластические свойства. Дальнейшее повышение температуры приводит к разрушению кристаллической решетки алюмосиликатов и распаду их на отдельные окислы: при повышении температуры до 1000 °С образуется соединение силлиманит, при температуре 1200-1300 С – новый минерал муллит. Эти минералы обеспечивают высокую прочность и стойкость керамического черепка к различным факторам внешней среды.

Читайте также:  Серо синие стены в спальне

После обжига полученные изделии медленно охлаждаются, так как при резком охлаждении могут образоваться трещины. Перед отгрузкой потребителю керамические изделия сортируют с целью проверки качественных показателей на их соответствие требованиям государственных стандартов.

1. КЛАССИФИКАЦИЯ И ОБЩИЕ СВОЙСТВА КЕРАМИЧЕСКИХ СТРОИТЕЛЬНЫХ МАТЕРИАЛОВ И ИЗДЕЛИИ. 2

1.1. КЛАССИФИКАЦИЯ КЕРАМИЧЕСКИХ СТРОИТЕЛЬНЫХ МАТЕРИАЛОВ И ИЗДЕЛИЙ. 2

1.2. ОБЩИЕ СВОЙСТВА КЕРАМИЧЕСКИХ СТРОИТЕЛЬНЫХ МАТЕРИАЛОВ И. 3

2. ВИДЫ И ХАРАКТЕРИСТИКИ СТЕНОВЫХ КЕРАМИЧЕСКИХ ИЗДЕЛИЙ. 6

3. ТЕХНОЛОГИЯ КИРПИЧА, ИЗГОТОВЛЯЕМОГО СПОСОБОМ ПОЛУСУХОГО ПРЕССОВАНИЯ. 7

3.1. Приготовление пресс-порошка. 7

3.2.Прессование изделий из керамических порошков. 9

3.3. Сушка спрессованного сырца. 14

3.4. Обжиг спрессованного сырца. 14

1.1. КЛАССИФИКАЦИЯ КЕРАМИЧЕСКИХ СТРОИТЕЛЬНЫХ МАТЕРИАЛОВ И ИЗДЕЛИЙ

Керамические изделия обладают различны ми свой­ствами, которые определяются составом исходного сырья, способами его переработки, а также условиями обжи­га—газовой средой, температурой и длительностью. Материал (т.е. тело), из которого состоят керамические изделия, в технологии керамики именуют керамическим черепком.

Строительные керамические изделия классифициру­ют по структуре керамического черепка и по их конст­руктивному назначению в отдельных элементах зданий и сооружений.

По структуре черепка различают изделия с пористым и со спекшимся черепком, а также изделия грубой и тон­кой керамики. Пористыми в технологии керамики условно считают изделия, у которых водопоглощение черепка превышает 5%, обычно такой черепок пропуска­ет воду. Спекшимся считают черепок с водопоглощением ниже 5%; как правило, он водонепроницаем.

У изделий грубой керамики черепок имеет в изломе зернистое строение (макронеоднородный). Большинство строительных керамических изделий — строительный кирпич, черепица, канализационные трубы и др. — являются изделиями грубой керамики.

У изделий тонкой керамики излом черепка име­ет макрооднородное строение. Он может быть пористым, как, например, у фаянсовых облицовочных глазурованных плиток, и спекшимся (плитки для полов, кислотостойкий кирпич, фарфоровые изделия). Изделия со спекшимся черепком с водопоглощением ниже 1 % называют каменными керамическими. Если при этом черепок обладает еще и просвечиваемостью, то его называют фарфором.

По конструктивному назначению различают следующие группы керамических строительных материалов иизделий:

стеновые изделия—кирпич, керамические камни и панели из них;

фасадные изделия—лицевой кирпич, различного рода плитки; архитектура-художественные детали, набор­ные панно;

изделия для внутренней облицовки стен—глазурованные плитки и фасонные детали к ним (карнизы, уголки, пояски);

плитки для облицовки пола;

изделия для перекрытий (балки, панели, специальные камни);

санитарно-строительные изделия—умывальные столы, унитазы, ванны;

дорожные изделия—клинкерный кирпич;

изделия для подземных коммуникаций — канализационные и дренажные трубы;

теплоизоляционные изделия (керамзитокерамические панели, ячеистая керамика, диатомитовые и шамотные легковесные изделия);

заполнители бетонов (керамзит, аглопорит).

1.2. ОБЩИЕ СВОЙСТВА КЕРАМИЧЕСКИХ СТРОИТЕЛЬНЫХ МАТЕРИАЛОВ ИИЗДЕЛИЙ

К керамическим материалам предъявляются раз­личные требования соответственно тем воздействиям, ко­торые они испытывают при использовании их в строи­тельстве. В связи с этим необходимо знать основные свойства керамического материала и пути их регулиро­вания в процессе изготовления различных керамических изделий.

Водопоглощение керамических материалов характе­ризует количественную величину их пористости и соот­ветственно степень спекания, которая в свою очередь влияет на многие рабочие свойства изделий строитель­ной керамики: морозостойкость, паро- и воздухопрони­цаемость, сцепление с раствором, загрязняемость и др. Диапазон этого показателя для изделий строительной керамики в зависимости от их вида и назначения доволь­но велик—от 1—30%.

Предел прочности при сжатииR керамических ма­териалов зависит от их состава и структуры и уменьша­ется с увеличением размера образца. Наиболее важное значение Rсж имеет для изделий стеновой керамики, ко­торые воспринимают большие нагрузки в зданиях и со­оружениях. По этому показателю стеновые изделия маркируют, принимая за марку среднюю величину по результатам испытания пяти образцов.

Для изделий строительной керамики Rсж находится в пределах 7,5—70 МПа.

а между прочностью пустотелых изделий R`сж и их объемной массой (брутто) g` отмечается зависимость вида квадратичной параболы (рис. 66)

Предел прочности при сжатии пустотелых изделий определяют с учетом их «рабочего» положения в стене.

Общую разрушающую нагрузку делят на площадь брутто.

Предел прочности при изгибе керамических материа­лов Rиз зависит от тех же факторов, что и R, с той лишь разницей, что здесь структура материала оказыва­ет более резкое влияние на его сопротивляемость изги­бу. Так, например, кирпич полусухого прессования имеет меньшую величину предела прочности при изгибе, чем кирпич пластического формования, изготовленный из тех же глин, хотя R последнего ниже, чем у кир­пича полусухого формования.

Предел прочности при изгибе регламентируется ГОСТами для кирпича, поскольку в стене он испытывает не только сжимающие, но и изгибающие нагрузки, вслед­ствие неровностей своей поверхности. Этот показатель регламентируется и для некоторых других керамических изделий. По нему также судят об относительной прочно­сти испытуемого материала и используют его как кос­венный показатель для характеристики некоторых дру­гих свойств глинистого сырья и обожженных изделий (связность, связующая способность, термостойкость)

Для керамических материалов Rизнаходится в пре­делах 0,7—5 МП а.

Морозостойкостью называют способность материала в насыщенном водой состоянии выдерживать многократ­ное попеременное замораживание и оттаивание без приз­наков разрушения и без значительного понижения проч­ности. Показателем морозостойкости является количест­во теплосмен, которое выдерживает материал без признаков разрушения.

Обстоятельные исследования по влиянию грануло-метрии пор на морозостойкость керамических материа­лов выявили следующие положения:

все поры в керамическом материале (с точки зрения морозостойкости) могут быть разделены на три катего­рии: опасные, безопасные и резервные;

опасные поры заполняются водой при насыще­нии на холоду. В них она удерживается при извлечении материала из воды и замерзает при температуре от —15 до —20° С. Диаметр этих пор от 200 до 1 мк для глиняного кирпича пластического прессования, от 200 до 0,1 мк для глиняного кирпича полусухого прессо­вания;

безопасные поры при насыщении на холоду во­дой не заполняются, либо заполнившая их вода не за­мерзает при указанных температурах. Это обычно мел­кие поры. Заполняющая их вода становится по существу пристеночной адсорбированной влагой, имеющей свой­ства почти твердого тела и температуру замерзания су­щественно ниже (—20° С);

резервные поры при насыщении на холоду пол­ностью заполняются водой, но из них при извлечении об­разца из насыщающего сосуда вода частично вытекает вследствие малых капиллярных сил. Это крупные поры диаметром более 200 мк.

Согласно этим исследованиям, керамический мате­риал будет морозостойким, если в нем объем резервных пор достаточен для компенсации прироста объема замерзающей воды в опасных порах.

Алгебраически это условие выражают (в %) фор­мулой

где С—структурная характеристика материала; Vр и Vоп– объем пор соответственно резервных (размером более 200 мк) и опасных.

Экспериментальная кривая зависимости морозостой­кости полнотелого кирпича от его структурной характе­ристики (рис. 67) показывает, что при С 6.

Морозостойкость определяет долговечность керами­ческих материалов при их службе в условиях воздействия на них внешней среды. Поэтому требования морозо­стойкости регламентированы ГОСТами для стеновых фасадных, кровельных и некоторых других изделии строительной керамики.

Теплопроводность керамических материалов зависит от их объемной массы (рис. 68, а), состава, вида и раз­мера пор и резко возрастает с увеличением их влажно­сти (рис. 68, б), так как теплопроводность воды [l=0,58 Вт/(м-град)] выше теплопроводности воздуха

Понравилась статья? Поделиться с друзьями:
ТурбоЗайм
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.

Adblock detector